Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging light-emitting diodes for next-generation data communications


The continuing development of consumer electronics, mobile communications and advanced computing technologies has led to a rapid growth in data traffic, creating challenges for the communications industry. Light-emitting diode (LED)-based communication links are of potential use in both free space and optical interconnect applications, and LEDs based on emerging semiconductor materials, which can offer tunable optoelectronics properties and solution-processable manufacturing, are of particular interest in the development of next-generation data communications. Here we review the development of emerging LED materials—organic semiconductors, colloidal quantum dots and metal halide perovskites—for use in optical communications. We examine efforts to improve the modulation performance and device efficiency of these LEDs, and consider potential applications in on-chip interconnects and light fidelity (Li-Fi). We also explore the challenges that exist in developing practical high-speed LED-based data communication systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: LEDs based on emerging materials.
Fig. 2: Frequency response characteristics of and research progress in emerging LEDs.
Fig. 3: Recent advances in enhancing the EQE for three types of LED.
Fig. 4: White-light wireless transmission.
Fig. 5: Future scenarios for LED communications.


  1. 1.

    Lindemann, M. et al. Ultrafast spin-lasers. Nature 568, 212–215 (2019).

    Article  Google Scholar 

  2. 2.

    Karunatilaka, D., Zafar, F., Kalavally, V. & Parthiban, R. LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutorials 17, 1649–1678 (2015).

    Article  Google Scholar 

  3. 3.

    Rappaport, T. S. et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 7, 78729–78757 (2019).

    Article  Google Scholar 

  4. 4.

    Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).

    Article  Google Scholar 

  5. 5.

    Dang, S., Amin, O., Shihada, B. & Alouini, M.-S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Article  Google Scholar 

  6. 6.

    Ren, A., Yuan, L., Xu, H., Wu, J. & Wang, Z. Recent progress of III–V quantum dot infrared photodetectors on silicon. J. Mater. Chem. C 7, 14441–14453 (2019).

    Article  Google Scholar 

  7. 7.

    Rashidi, A., Monavarian, M., Aragon, A., Rishinaramangalam, A. & Feezell, D. Nonpolar plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE Electron Device Lett. 39, 520–523 (2018).

    Article  Google Scholar 

  8. 8.

    Wang, L. et al. 13 GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photon. Res. 9, 792 (2021).

    Article  Google Scholar 

  9. 9.

    Clark, J. & Lanzani, G. Organic photonics for communications. Nat. Photon. 4, 438–446 (2010).

    Article  Google Scholar 

  10. 10.

    García De Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 1–16 (2017).

    Google Scholar 

  11. 11.

    Asghari, M. & Krishnamoorthy, A. V. Energy-efficient communication. Nat. Photon. 5, 268–270 (2011).

    Article  Google Scholar 

  12. 12.

    Tang, C. W. & Vanslyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  Google Scholar 

  13. 13.

    Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  Google Scholar 

  14. 14.

    Jou, J. H., Kumar, S., Agrawal, A., Li, T. H. & Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 3, 2974–3002 (2015).

    Article  Google Scholar 

  15. 15.

    Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  Google Scholar 

  16. 16.

    Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  Google Scholar 

  17. 17.

    Won, Y. H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  Google Scholar 

  18. 18.

    Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  Google Scholar 

  19. 19.

    Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    Article  Google Scholar 

  20. 20.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  21. 21.

    Best research-cell efficiency chart. National Renewable Energy Laboratory (2021).

  22. 22.

    Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  Google Scholar 

  23. 23.

    Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  Google Scholar 

  24. 24.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  Google Scholar 

  25. 25.

    Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  Google Scholar 

  26. 26.

    Kim, Y. H., Cho, H. & Lee, T. W. Metal halide perovskite light emitters. Proc. Natl. Acad. Sci. USA 113, 11694–11702 (2016).

    Article  Google Scholar 

  27. 27.

    Barlow, I. A., Kreouzis, T. & Lidzey, D. G. A polymer light-emitting diode as an optical communication light source. Org. Electron. 8, 621–624 (2007).

    Article  Google Scholar 

  28. 28.

    Fukuda, T., Okada, T., Wei, B., Ichikawa, M. & Taniguchi, Y. Influence of carrier-injection efficiency on modulation rate of organic light source. Opt. Lett. 32, 1905 (2007).

    Article  Google Scholar 

  29. 29.

    Fukuda, T., Wei, B., Suto, E., Ichikawa, M. & Taniguchi, Y. Fast-response organic-inorganic hybrid light-emitting diode. Phys. Status Solidi Rapid Res. Lett. 2, 290–292 (2008).

    Article  Google Scholar 

  30. 30.

    Barlow, I. A., Kreouzis, T. & Lidzey, D. G. High-speed electroluminescence modulation of a conjugated-polymer light emitting diode. Appl. Phys. Lett. 94, 11–14 (2009).

    Article  Google Scholar 

  31. 31.

    Haigh, P. A. et al. Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Opt. Express 22, 2830 (2014).

    Article  Google Scholar 

  32. 32.

    Haigh, P. A. et al. Wavelength-multiplexed polymer LEDs: towards 55 Mb/s organic visible light communications. IEEE J. Sel. Areas Commun. 33, 1819–1828 (2015).

    Article  Google Scholar 

  33. 33.

    Chen, H., Xu, Z., Gao, Q. & Li, S. A 51.6 Mb/s experimental VLC system using a monochromic organic LED. IEEE Photon. J. 10, 1–12 (2018).

    Google Scholar 

  34. 34.

    Minotto, A. et al. Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light Sci. Appl. 9, 70 (2020).

    Article  Google Scholar 

  35. 35.

    Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    Article  Google Scholar 

  36. 36.

    Xu, Z., Tang, B. Z., Wang, Y. & Ma, D. Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters. J. Mater. Chem. C 8, 2614–2642 (2020).

    Article  Google Scholar 

  37. 37.

    Salehi, A. et al. Realization of high-efficiency fluorescent organic light-emitting diodes with low driving voltage. Nat. Commun. 10, 2305 (2019).

    Article  Google Scholar 

  38. 38.

    Yoshida, K. et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 11, 1171 (2020).

    Article  Google Scholar 

  39. 39.

    Fukuda, T., Okada, T., Wei, B., Ichikawa, M. & Taniguchi, Y. Transient property of optically pumped organic film of different fluorescence lifetimes. Appl. Phys. Lett. 90, 1–4 (2007).

    Article  Google Scholar 

  40. 40.

    Chime, A. C. et al. Electrical modelling and design of ultra-fast micro-OLED with coplanar wave-guided electrodes in ON–OFF regime. Org. Electron. 56, 284–290 (2018).

    Article  Google Scholar 

  41. 41.

    Ruhstaller, B. et al. Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes. J. Appl. Phys. 89, 4575–4586 (2001).

    Article  Google Scholar 

  42. 42.

    Xiao, X. et al. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication. Opt. Express 24, 21577 (2016).

    Article  Google Scholar 

  43. 43.

    Dursun, I. et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon. 3, 1150–1156 (2016).

    Article  Google Scholar 

  44. 44.

    Kang, C. H. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 8, 2047–7538 (2019).

    Google Scholar 

  45. 45.

    Xiao, H. et al. Effects of injection current on the modulation bandwidths of quantum-dot light-emitting diodes. IEEE Trans. Electron Devices 66, 4805–4810 (2019).

    Article  Google Scholar 

  46. 46.

    Xiao, H. et al. 4 Mb/s under a 3 m transmission distance using a quantum dot light-emitting diode and NRZ-OOK modulation. Opt. Lett. 45, 1297 (2020).

    Article  Google Scholar 

  47. 47.

    Xiao, H., Wang, R., Wang, K., Chen, W. & Chiang, K. S. Trade-offs between illumination and modulation performances of quantum-dot LED. IEEE Photon. Technol. Lett. 32, 726–729 (2020).

    Article  Google Scholar 

  48. 48.

    Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photon. 10, 253–257 (2016).

    Article  Google Scholar 

  49. 49.

    Pu, C. et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nat. Commun. 11, 937 (2020).

    Article  Google Scholar 

  50. 50.

    Deng, W. et al. 2D Ruddlesden–Popper perovskite nanoplate based deep‐blue light‐emitting diodes for light communication. Adv. Funct. Mater. 29, 1903861 (2019).

    Article  Google Scholar 

  51. 51.

    Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Article  Google Scholar 

  52. 52.

    Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  Google Scholar 

  53. 53.

    Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article  Google Scholar 

  54. 54.

    Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  Google Scholar 

  55. 55.

    Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  Google Scholar 

  56. 56.

    Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  Google Scholar 

  57. 57.

    O’Brien, D. F., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Improved energy transfer in electrophosphorescent devices. Appl. Phys. Lett. 74, 442–444 (1999).

    Article  Google Scholar 

  58. 58.

    Shin, H. et al. Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer. Adv. Mater. 28, 4920–4925 (2016).

    Article  Google Scholar 

  59. 59.

    Lu, G. Z. et al. Rapid room temperature synthesis of red iridium(III) complexes containing a four-membered Ir–S–C–S chelating ring for highly efficient OLEDs with EQE over 30%. Chem. Sci. 10, 3535–3542 (2019).

    Article  Google Scholar 

  60. 60.

    Sinha, S., Rothe, C., Güntner, R., Scherf, U. & Monkman, A. P. Electrophosphorescence and delayed electroluminescence from pristine polyfluorene thin-film devices at low temperature. Phys. Rev. Lett. 90, 127402 (2003).

    Article  Google Scholar 

  61. 61.

    Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light-emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).

    Article  Google Scholar 

  62. 62.

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  Google Scholar 

  63. 63.

    Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    Article  Google Scholar 

  64. 64.

    Li, W. et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence. Adv. Funct. Mater. 22, 2797–2803 (2012).

    Article  Google Scholar 

  65. 65.

    Di, D. et al. High-performance light-emitting diodes based on carbene-metal-amides. Science 356, 159–163 (2017).

    Article  Google Scholar 

  66. 66.

    Hall, C. R., Romanov, A. S., Bochmann, M. & Meech, S. R. Ultrafast structure and dynamics in the thermally activated delayed fluorescence of a carbene-metal-amide. J. Phys. Chem. Lett. 9, 5873–5876 (2018).

    Article  Google Scholar 

  67. 67.

    Xiang, C., Peng, C., Chen, Y. & So, F. Origin of sub-bandgap electroluminescence in organic light-emitting diodes. Small 11, 5439–5443 (2015).

    Article  Google Scholar 

  68. 68.

    Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    Article  Google Scholar 

  69. 69.

    Abdurahman, A. et al. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 19, 1224–1229 (2020).

    Article  Google Scholar 

  70. 70.

    Shang, Y. & Ning, Z. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. Natl Sci. Rev. 4, 170–183 (2017).

    Article  Google Scholar 

  71. 71.

    Chen, F., Guan, Z. & Tang, A. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes. J. Mater. Chem. C 6, 10958–10981 (2018).

    Article  Google Scholar 

  72. 72.

    Pal, B. N. et al. ‘Giant’ CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: Strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12, 331–336 (2012).

    Article  Google Scholar 

  73. 73.

    Bae, W. K. et al. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano 7, 3411–3419 (2013).

    Article  Google Scholar 

  74. 74.

    Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–265 (2015).

    Article  Google Scholar 

  75. 75.

    Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  Google Scholar 

  76. 76.

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  Google Scholar 

  77. 77.

    Shrestha, A., Batmunkh, M., Tricoli, A., Qiao, S. Z. & Dai, S. Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis ligand exchange, and applications in solar cells. Angew. Chem. Int. Ed. 58, 5202–5224 (2019).

    Article  Google Scholar 

  78. 78.

    Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  Google Scholar 

  79. 79.

    Kagan, C. R., Murray, C. B., Nirmal, M. & Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).

    Article  Google Scholar 

  80. 80.

    Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    Article  Google Scholar 

  81. 81.

    Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photon. 14, 227–233 (2020).

    Article  Google Scholar 

  82. 82.

    Vasilopoulou, M. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photon. 14, 50–56 (2020).

    Article  Google Scholar 

  83. 83.

    Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Article  Google Scholar 

  84. 84.

    Miao, Y. et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 10, 1–7 (2019).

    Article  Google Scholar 

  85. 85.

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  Google Scholar 

  86. 86.

    Zheng, K. et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 6, 2969–2975 (2015).

    Article  Google Scholar 

  87. 87.

    Stranks, S. D., Hoye, R. L. Z., Di, D., Friend, R. H. & Deschler, F. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).

    Article  Google Scholar 

  88. 88.

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    Article  Google Scholar 

  89. 89.

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  Google Scholar 

  90. 90.

    Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article  Google Scholar 

  91. 91.

    Wang, H. et al. Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nat. Commun. 11, 891 (2020).

    Article  Google Scholar 

  92. 92.

    Hong, X., Ishihara, T. & Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 45, 6961–6964 (1992).

    Article  Google Scholar 

  93. 93.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  Google Scholar 

  94. 94.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  Google Scholar 

  95. 95.

    Shang, Y. et al. Highly stable hybrid perovskite light-emitting diodes based on Dion–Jacobson structure. Sci. Adv. 5, eaaw8072 (2019).

    Article  Google Scholar 

  96. 96.

    Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Article  Google Scholar 

  97. 97.

    Wang, Q., Ren, J., Peng, X. F., Ji, X. X. & Yang, X. H. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl. Mater. Interfaces 9, 29901–29906 (2017).

    Article  Google Scholar 

  98. 98.

    Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  Google Scholar 

  99. 99.

    Matsushima, T. et al. High performance from extraordinarily thick organic light-emitting diodes. Nature 572, 502–506 (2019).

    Article  Google Scholar 

  100. 100.

    Wang, Z. et al. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes. Adv. Funct. Mater. 28, 1804187 (2018).

    Article  Google Scholar 

  101. 101.

    Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  Google Scholar 

  102. 102.

    Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 1341 (2016).

    Article  Google Scholar 

  103. 103.

    Chen, Z. et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12%. Joule 5, 456–466 (2021).

    Article  Google Scholar 

  104. 104.

    Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon. 2, 483–487 (2008).

    Article  Google Scholar 

  105. 105.

    Koo, W. H. et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nat. Photon. 4, 222–226 (2010).

    Article  Google Scholar 

  106. 106.

    Dodabalapur, A., Rothberg, L. J., Miller, T. M. & Kwock, E. W. Microcavity effects in organic semiconductors. Appl. Phys. Lett. 64, 2486–2488 (1994).

    Article  Google Scholar 

  107. 107.

    Ramuz, M., Bürgi, L., Stanley, R. & Winnewisser, C. Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: toward monolithically integrated optical sensors. J. Appl. Phys. 105, 184508 (2009).

    Article  Google Scholar 

  108. 108.

    Ratcliff, E. L. et al. A planar, chip-based, dual-beam refractometer using an integrated organic light-emitting diode (OLED) light source and organic photovoltaic (OPV) detectors. Anal. Chem. 82, 2734–2742 (2010).

    Article  Google Scholar 

  109. 109.

    Haigh, P. A., Ghassemlooy, Z., Rajbhandari, S. & Papakonstantinou, I. Visible light communications using organic light emitting diodes. IEEE Commun. Mag. 51, 148–154 (2013).

    Article  Google Scholar 

  110. 110.

    Rajbhandari, S. et al. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 32, 023001 (2017).

    Article  Google Scholar 

  111. 111.

    Schubert, E. F., Gessmann, T. & Kim, J. K. Organic Light Emitting Devices: Synthesis, Properties and Applications (eds Müllen, K. & Scherf, U.) 1–33 (Wiley, 2005);

  112. 112.

    Wang, Z. et al. Warm-white-light-emitting diode based on a dye-loaded metal–organic framework for fast white-light communication. ACS Appl. Mater. Interfaces 9, 35253–35259 (2017).

    Article  Google Scholar 

  113. 113.

    Khalid, A. M., Cossu, G., Corsini, R., Choudhury, P. & Ciaramella, E. 1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photon. J. 4, 1465–1473 (2012).

    Article  Google Scholar 

  114. 114.

    Huang, X., Wang, Z., Shi, J., Wang, Y. & Chi, N. 16 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. Opt. Express 23, 22034 (2015).

    Article  Google Scholar 

  115. 115.

    Manousiadis, P. P., Yoshida, K., Turnbull, G. A. & Samuel, I. D. W. Organic semiconductors for visible light communications. Philos. Trans. R. Soc. A 378, 20190186 (2020).

    Article  Google Scholar 

  116. 116.

    Chun, H. et al. Visible light communication using a blue GaN μ LED and fluorescent polymer color converter. IEEE Photon. Technol. Lett. 26, 2035–2038 (2014).

    Article  Google Scholar 

  117. 117.

    Sajjad, M. T. et al. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS Photon. 2, 194–199 (2015).

    Article  Google Scholar 

  118. 118.

    Vithanage, D. A. et al. BODIPY star-shaped molecules as solid state colour converters for visible light communications. Appl. Phys. Lett. 109, 013302 (2016).

    Article  Google Scholar 

  119. 119.

    Zhang, Y. et al. Aggregation-induced emission luminogens as color converters for visible-light communication. ACS Appl. Mater. Interfaces 10, 34418–34426 (2018).

    Article  Google Scholar 

  120. 120.

    Mei, S. et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces 10, 5641–5648 (2018).

    Article  Google Scholar 

  121. 121.

    Zhou, Z. et al. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted, aggregation-enhanced emission for light-emitting devices and visible light communication. Adv. Sci. 5, 1800369 (2018).

    Article  Google Scholar 

  122. 122.

    Liu, E. et al. Highly emissive carbon dots in solid state and their applications in light-emitting devices and visible light communication. ACS Sustain. Chem. Eng. 7, 9301–9308 (2019).

    Article  Google Scholar 

  123. 123.

    Geffroy, B., le Roy, P. & Prat, C. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).

    Article  Google Scholar 

  124. 124.

    Zhang, H., Chen, S. & Sun, X. W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum efficiency exceeding 21%. ACS Nano 12, 697–704 (2018).

    Article  Google Scholar 

  125. 125.

    Lee, K. H. et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano 9, 10941–10949 (2015).

    Article  Google Scholar 

  126. 126.

    Luo, J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018).

    Article  Google Scholar 

  127. 127.

    Zou, S. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443–11450 (2017).

    Article  Google Scholar 

  128. 128.

    Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021).

    Article  Google Scholar 

  129. 129.

    Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 958–967 (2013).

    Article  Google Scholar 

  130. 130.

    Hou, X. et al. Engineering Auger recombination in colloidal quantum dots via dielectric screening. Nat. Commun. 10, 1750 (2019).

    Article  Google Scholar 

  131. 131.

    Wu, Z., Liu, P., Zhang, W., Wang, K. & Sun, X. W. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett. 5, 1095–1106 (2020).

    Article  Google Scholar 

  132. 132.

    Jiang, C. et al. Printed subthreshold organic transistors operating at high gain and ultralow power. Science 363, 719–723 (2019).

    Article  Google Scholar 

  133. 133.

    Zhang, C. et al. Organic printed photonics: from microring lasers to integrated circuits. Sci. Adv. 1, e1500257 (2015).

    Article  Google Scholar 

  134. 134.

    Lee, M. et al. Broadband modulation of light by using an electro-optic polymer. Science 298, 1401–1403 (2002).

    Article  Google Scholar 

  135. 135.

    Zhu, M. et al. Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection. Opt. Express 26, 6629 (2018).

    Article  Google Scholar 

  136. 136.

    Fan, Q., Zhou, G., Gui, T., Lu, C. & Lau, A. P. T. Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning. Nat. Commun. 11, 3694 (2020).

    Article  Google Scholar 

  137. 137.

    Zhang, Y., Wang, L., Wang, K., Wong, K. S. & Wu, K. Recent advances in the hardware of visible light communication. IEEE Access 7, 91093–91104 (2019).

    Article  Google Scholar 

  138. 138.

    Agrawal, G. P. FiberOptic Communication Systems (Wiley, 2010);

Download references


We thank X. Li for valuable discussions and arguments. H.W. thanks D. Dong for the screen bar that helped when drafting this article. This work was supported by EPSRC (2015; EP/M015165/1), the National Natural Science Foundation of China (61974014), the National Key Research and Development Program of China (2019YFB2203400), the ‘111 Project’ (B20030), the Fundamental Research Funds for the Central Universities (ZYGX2019Z018), the Innovation Group Project of Sichuan Province (20CXTD0090) and the UESTC Shared Research Facilities of Electromagnetic Wave and Matter Interaction (Y0301901290100201). W.Z. thanks the financial support from EPSRC New Investigator Award (2018; EP/R043272/1) and H2020-EU grant (2018; CORNET 760949).

Author information




All authors conceived this work and contributed to the discussion of content. A.R. and H.W. researched the data and wrote the first draft. W.Z., J.W. and I.H.W. revised the manuscript before submission.

Corresponding authors

Correspondence to Wei Zhang or Jiang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Jiang Tang, Lina Quan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, A., Wang, H., Zhang, W. et al. Emerging light-emitting diodes for next-generation data communications. Nat Electron 4, 559–572 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing