Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metasurfaces for bioelectronics and healthcare

Abstract

Bioelectronic systems typically rely on radiofrequency wireless components to interface with the human body, but such components are bulky and energy-demanding, which limits the performance of the systems. Metasurfaces—artificial two-dimensional materials with subwavelength structure—can be engineered to control electromagnetic fields around the human body and could be used to overcome the current limitations of bioelectronic interfaces. Here we review the development of metasurfaces for bioelectronics, and explore their potential for application in current and emerging healthcare technologies. We examine the use of metasurfaces to control electromagnetic fields in the vicinity of the human body, and discuss their application in microwave imaging, magnetic resonance imaging, biosensors, body networks and wireless power transfer. We also consider developments in materials science and artificial intelligence that can enhance the properties of metasurfaces for bioelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metasurfaces in bioelectronic applications.
Fig. 2: Metasurfaces for electromagnetic control around the body.
Fig. 3: Metasurfaces for electromagnetic control on the body.
Fig. 4: Metasurfaces for electromagnetic control in the body.
Fig. 5: Emerging research directions.

Similar content being viewed by others

References

  1. Goodman, R. & Blank, M. Insights into electromagnetic interaction mechanisms. J. Cell. Physiol. 192, 16–22 (2002).

    Article  Google Scholar 

  2. Pasek, J., Pasek, T., Sieroń-Stołtny, K., Cieślar, G. & Sieroń, A. Electromagnetic fields in medicine—the state of art. Electromagn. Biol. Med. 35, 170–175 (2016).

    Google Scholar 

  3. Polk, C. & Postow, E. Handbook of Biological Effects of Electromagnetic Fields (CRC Press, 1995).

  4. Elmqvist, R. & Senning, A. An implantable pacemaker for the heart. In Proceedings of the Second International Conference on Medical Electronics, Paris (ed. Smyth, C. N.) 27 (Iliffe, 1959).

  5. Zeng, F.-G., Rebscher, S., Harrison, W., Sun, X. & Feng, H. Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008).

    Article  Google Scholar 

  6. Weiland, J. D. & Humayun, M. S. Visual prosthesis. Proc. IEEE 96, 1076–1084 (2008).

    Article  Google Scholar 

  7. Wu, G. & Xue, S. Portable preimpact fall detector with inertial sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 178–183 (2008).

    Article  Google Scholar 

  8. Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417–417 (2000).

    Article  Google Scholar 

  9. Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108 (2017).

    Article  Google Scholar 

  10. Pozar, D. M. Microwave Engineering (Wiley, 2011).

  11. Lin, J. C. A new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation. IEEE Antennas Propag. Mag. 48, 157–159 (2006).

    Article  Google Scholar 

  12. Poon, A. S., O’Driscoll, S. & Meng, T. H. Optimal frequency for wireless power transmission into dispersive tissue. IEEE Trans. Antennas Propag. 58, 1739–1750 (2010).

    Article  Google Scholar 

  13. Glybovski, S. B., Tretyakov, S. A., Belov, P. A., Kivshar, Y. S. & Simovski, C. R. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016).

    Article  MathSciNet  Google Scholar 

  14. Zhang, L., Mei, S., Huang, K. & Qiu, C. W. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016).

    Article  Google Scholar 

  15. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  Google Scholar 

  16. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  Google Scholar 

  17. Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).

  18. Liaskos, C. et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56, 162–169 (2018).

    Article  Google Scholar 

  19. Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).

  20. Yoo, I., Imani, M. F., Pulido-Mancera, L., Sleasman, T. & Smith, D. R. Analytic model of a coax-fed planar cavity-backed metasurface antenna for pattern synthesis. IEEE Trans. Antennas Propag. 67, 5853–5866 (2019).

    Article  Google Scholar 

  21. Liu, X., Cao, J., Tang, S. & Wen, J. Wi-Sleep: Contactless sleep monitoring via WiFi signals. In 2014 IEEE Real-Time Systems Symposium 346–355 (IEEE, 2014).

  22. Wang, Y., Wu, K. & Ni, L. M. Wifall: device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 16, 581–594 (2016).

    Article  Google Scholar 

  23. Fear, E. C., Hagness, S. C., Meaney, P. M., Okoniewski, M. & Stuchly, M. A. Enhancing breast tumor detection with near-field imaging. IEEE Microw. Mag. 3, 48–56 (2002).

    Article  Google Scholar 

  24. Meaney, P. M., Fanning, M. W., Li, D., Poplack, S. P. & Paulsen, K. D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 48, 1841–1853 (2000).

    Article  Google Scholar 

  25. Imani, M. F. et al. Review of metasurface antennas for computational microwave imaging. IEEE Trans. Antennas Propag. 68, 1860–1875 (2020).

    Article  Google Scholar 

  26. Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

    Article  Google Scholar 

  27. Gollub, J. et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci. Rep. 7, 42650 (2017).

    Article  Google Scholar 

  28. Tsilipakos, O. et al. Toward intelligent metasurfaces: the progress from globally tunable metasurfaces to software‐defined metasurfaces with an embedded network of controllers. Adv. Opt. Mater. 8, 2000783 (2020).

    Article  Google Scholar 

  29. Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

  30. Lauterbur, P. C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    Article  Google Scholar 

  31. Hartwig, V. et al. Biological effects and safety in magnetic resonance imaging: a review. Int. J. Environ. Res. Public Health 6, 1778–1798 (2009).

    Article  Google Scholar 

  32. Mueller, M. F. et al. Double spiral array coil design for enhanced 3D parallel MRI at 1.5 Tesla. Concepts Magn. Reson. B 35, 67–79 (2009).

    Article  Google Scholar 

  33. Roemer, P. B., Edelstein, W. A., Hayes, C. E., Souza, S. P. & Mueller, O. M. The NMR phased array. Magn. Reson. Med. 16, 192–225 (1990).

    Article  Google Scholar 

  34. Teeuwisse, W. M., Brink, W. M. & Webb, A. G. Quantitative assessment of the effects of high‐permittivity pads in 7 Tesla MRI of the brain. Magn. Reson. Med. 67, 1285–1293 (2012).

    Article  Google Scholar 

  35. Shchelokova, A. et al. Enhancement of magnetic resonance imaging with metasurfaces: From concept to human trials. In 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials) 31–33 (IEEE, 2017).

  36. Slobozhanyuk, A. P. et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28, 1832–1838 (2016).

    Article  Google Scholar 

  37. Freire, M. J., Marques, R. & Jelinek, L. Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 93, 231108 (2008).

    Article  Google Scholar 

  38. Schmidt, R., Slobozhanyuk, A., Belov, P. & Webb, A. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci. Rep. 7, 1678 (2017).

    Article  Google Scholar 

  39. Shchelokova, A. V. et al. Experimental investigation of a metasurface resonator for in vivo imaging at 1.5 T. J. Magn. Reson. 286, 78–81 (2018).

    Article  Google Scholar 

  40. Shchelokova, A. V. et al. Locally enhanced image quality with tunable hybrid metasurfaces. Phys. Rev. Appl. 9, 014020 (2018).

    Article  Google Scholar 

  41. Zhao, X., Duan, G., Wu, K., Anderson, S. W. & Zhang, X. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv. Mater. 31, 1905461 (2019).

    Article  Google Scholar 

  42. Pantelopoulos, A. & Bourbakis, N. G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. C 40, 1–12 (2009).

    Article  Google Scholar 

  43. Huang, Q.-A., Dong, L. & Wang, L.-F. LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 25, 822–841 (2016).

    Article  Google Scholar 

  44. Heywood, J. T. et al. Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS sensor. Circulation 135, 1509–1517 (2017).

    Article  Google Scholar 

  45. Dunbar, G. E., Shen, B. Y. & Aref, A. A. The Sensimed Triggerfish contact lens sensor: efficacy, safety, and patient perspectives. Clin. Ophthalmol. 11, 875 (2017).

    Article  Google Scholar 

  46. Dautta, M. et al. Multi‐functional hydrogel‐interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing. Adv. Electron. Mater. 6, 1901311 (2020).

    Article  Google Scholar 

  47. Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014).

  48. Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication (Wiley, 2010).

  49. Preradovic, S. & Karmakar, N. C. Chipless RFID: bar code of the future. IEEE Microw. Mag. 11, 87–97 (2010).

    Article  Google Scholar 

  50. Andriamiharivolamena, T., Vena, A., Perret, E., Lemaitre-Auger, P. & Tedjini, S. Chipless identification applied to human body. In 2014 IEEE RFID Technology and Applications Conference (RFID-TA) 241–245 (IEEE, 2014).

  51. Vena, A. et al. Design and realization of stretchable sewn chipless RFID tags and sensors for wearable applications. In 2013 IEEE International Conference on RFID (RFID) 176–183 (IEEE, 2013).

  52. Tian, X., Zeng, Q., Nikolayev, D. & Ho, J. S. Conformal propagation and near-omnidirectional radiation with surface plasmonic clothing. IEEE Trans. Antennas Propag. 68, 7309 (2020).

    Article  Google Scholar 

  53. Salonen, P., Yang, F., Rahmat-Samii, Y. & Kivikoski, M. WEBGA-wearable electromagnetic band-gap antenna. In IEEE Antennas and Propagation Society Symposium 451–454 (IEEE, 2004).

  54. Jiang, Z. H., Brocker, D. E., Sieber, P. E. & Werner, D. H. A compact, low-profile metasurface-enabled antenna for wearable medical body-area network devices. IEEE Trans. Antennas Propag. 62, 4021–4030 (2014).

    Article  MATH  Google Scholar 

  55. Yan, S. & Vandenbosch, G. A. Radiation pattern-reconfigurable wearable antenna based on metamaterial structure. IEEE Antennas Wirel. Propag. Lett. 15, 1715–1718 (2016).

    Article  Google Scholar 

  56. Tian, X. et al. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243 (2019).

    Article  Google Scholar 

  57. Han, S. et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10, eaan4950 (2018).

  58. Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article  Google Scholar 

  59. Mond, H. G. & Proclemer, A. The 11th World Survey of Cardiac Pacing and Implantable Cardioverter‐Defibrillators: calendar year 2009—a World Society of Arrhythmia’s project. Pacing Clin. Electrophysiol. 34, 1013–1027 (2011).

    Article  Google Scholar 

  60. Lee, P. M., Xiong, Z. & Ho, J. Methods for powering bioelectronic microdevices. Bioelectron. Med. 1, 201–217 (2018).

    Article  Google Scholar 

  61. Hannan, M. A., Mutashar, S., Samad, S. A. & Hussain, A. Energy harvesting for the implantable biomedical devices: issues and challenges. Biomed. Eng. Online 13, 79 (2014).

    Article  Google Scholar 

  62. Sinisterra, J. Application of ultrasound to biotechnology: an overview. Ultrasonics 30, 180–185 (1992).

    Article  Google Scholar 

  63. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article  Google Scholar 

  64. Charthad, J. et al. A mm-sized wireless implantable device for electrical stimulation of peripheral nerves. IEEE Trans. Biomed. Circuits Syst. 12, 257–270 (2018).

    Article  Google Scholar 

  65. Nelson, B. D., Karipott, S. S., Wang, Y. & Ong, K. G. Wireless technologies for implantable devices. Sensors 20, 4604 (2020).

    Article  Google Scholar 

  66. Goto, K., Nakagawa, T., Nakamura, O. & Kawata, S. An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 48, 830–833 (2001).

    Article  Google Scholar 

  67. Jelínková, H. Lasers for Medical Applications: Diagnostics, Therapy and Surgery (Elsevier, 2013).

  68. Wang, B. et al. Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011).

    Article  Google Scholar 

  69. Li, L., Liu, H., Zhang, H. & Xue, W. Efficient wireless power transfer system integrating with metasurface for biological applications. IEEE Trans. Ind. Electron. 65, 3230–3239 (2017).

    Article  Google Scholar 

  70. Assawaworrarit, S., Yu, X. & Fan, S. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature 546, 387–390 (2017).

    Article  Google Scholar 

  71. Kim, S., Ho, J. S. & Poon, A. S. Midfield wireless powering of subwavelength autonomous devices. Phys. Rev. Lett. 110, 203905 (2013).

    Article  Google Scholar 

  72. Hui, S. Y. R., Zhong, W. & Lee, C. K. A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500–4511 (2013).

    Article  Google Scholar 

  73. Wu, L., McGough, R. J., Arabe, O. A. & Samulski, T. V. An RF phased array applicator designed for hyperthermia breast cancer treatments. Phys. Med. Biol. 51, 1 (2005).

    Article  Google Scholar 

  74. Agrawal, D. R. et al. Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 1, 0043 (2017).

    Article  Google Scholar 

  75. Ratni, B. et al. Dynamically controlling spatial energy distribution with a holographic metamirror for adaptive focusing. Phys. Rev. Appl. 13, 034006 (2020).

    Article  Google Scholar 

  76. Nikolayev, D., Zhadobov, M., Karban, P. & Sauleau, R. Electromagnetic radiation efficiency of body-implanted devices. Phys. Rev. Appl. 9, 024033 (2018).

    Article  Google Scholar 

  77. Yang, F., Lee, P. M., Dong, Z., Tian, X. & Ho, J. S. Enhancing wireless transmission from the body with wearable diffractive patterns. Phys. Rev. Appl. 12, 054020 (2019).

    Article  Google Scholar 

  78. Genovesi, S., Butterworth, I. R., Serrallés, J. E. C. & Daniel, L. Metasurface matching layers for enhanced electric field penetration into the human body. IEEE Access 8, 197745–197756 (2020).

    Article  Google Scholar 

  79. Islam, M. T., Samsuzzaman, M., Kibria, S., Misran, N. & Islam, M. T. Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm. Sci. Rep. 9, 17317 (2019).

  80. Alqadami, A. S., Bialkowski, K. S., Mobashsher, A. T. & Abbosh, A. M. Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis. IEEE Trans. Biomed. Circuits Syst. 13, 124–134 (2018).

    Article  Google Scholar 

  81. O’Loughlin, D. et al. Microwave breast imaging: clinical advances and remaining challenges. IEEE Trans. Biomed. Eng. 65, 2580–2590 (2018).

    Article  Google Scholar 

  82. Collins, C. C. Miniature passive pressure transensor for implanting in the eye. IEEE Trans. Biomed. Eng. 2, 74–83 (1967).

    Article  Google Scholar 

  83. Nelson, B. J., Kaliakatsos, I. K. & Abbott, J. J. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    Article  Google Scholar 

  84. Than, T. D., Alici, G., Zhou, H. & Li, W. A review of localization systems for robotic endoscopic capsules. IEEE Trans. Biomed. Eng. 59, 2387–2399 (2012).

    Article  Google Scholar 

  85. Pourhomayoun, M., Jin, Z. & Fowler, M. L. Accurate localization of in-body medical implants based on spatial sparsity. IEEE Trans. Biomed. Eng. 61, 590–597 (2013).

    Article  Google Scholar 

  86. Bao, G., Pahlavan, K. & Mi, L. Hybrid localization of microrobotic endoscopic capsule inside small intestine by data fusion of vision and RF sensors. IEEE Sens. J. 15, 2669–2678 (2014).

    Article  Google Scholar 

  87. Chandra, R., Johansson, A. J., Gustafsson, M. & Tufvesson, F. A microwave imaging-based technique to localize an in-body RF source for biomedical applications. IEEE Trans. Biomed. Eng. 62, 1231–1241 (2014).

    Article  Google Scholar 

  88. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000).

    Article  Google Scholar 

  89. Monge, M., Lee-Gosselin, A., Shapiro, M. G. & Emami, A. Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins. Nat. Biomed. Eng. 1, 736–744 (2017).

    Article  Google Scholar 

  90. Falk, M. & Issels, R. Hyperthermia in oncology. Int. J. Hyperth. 17, 1–18 (2001).

    Article  Google Scholar 

  91. Simon, C. J., Dupuy, D. E. & Mayo-Smith, W. W. Microwave ablation: principles and applications. Radiographics 25, S69–S83 (2005).

    Article  Google Scholar 

  92. Gong, Y. & Wang, G. Superficial tumor hyperthermia with flat left-handed metamaterial lens. Prog. Electromagn. Res. 98, 389–405 (2009).

    Article  Google Scholar 

  93. Vrba, D. & Vrba, J. Novel applicators for local microwave hyperthermia based on zeroth-order mode resonator metamaterial. Int. J. Antennas Propag. 2014, 631398 (2014).

  94. Paulides, M., Trefna, H. D., Curto, S. & Rodrigues, D. Recent technological advancements in radiofrequency- and microwave-mediated hyperthermia for enhancing drug delivery. Adv. Drug Deliv. Rev. 163, 3–18 (2020).

    Article  Google Scholar 

  95. Bao, L. & Cui, T. J. Tunable, reconfigurable, and programmable metamaterials. Microw. Opt. Technol. Lett. 62, 9–32 (2020).

    Article  Google Scholar 

  96. Zhang, X. G. et al. Polarization‐controlled dual‐programmable metasurfaces. Adv. Sci. 7, 1903382 (2020).

    Article  Google Scholar 

  97. Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

  98. Shaltout, A. M. et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019).

    Article  Google Scholar 

  99. Lee, Y., Kim, S.-J., Park, H. & Lee, B. Metamaterials and metasurfaces for sensor applications. Sensors 17, 1726 (2017).

    Article  Google Scholar 

  100. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  Google Scholar 

  101. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  Google Scholar 

  102. Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019).

  103. Manzari, S. et al. Humidity sensing by polymer-loaded UHF RFID antennas. IEEE Sens. J. 12, 2851–2858 (2012).

    Article  Google Scholar 

  104. Leber, A. et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 3, 316–326 (2020).

  105. Zhang, Y. et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat. Commun. 11, 5629 (2020).

  106. Li, J., Chen, Y., Hu, Y., Duan, H. & Liu, N. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano 14, 7892–7898 (2020).

  107. Mannoor, M. S. et al. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  Google Scholar 

  108. Lei, T. et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl Acad. Sci. USA 114, 5107–5112 (2017).

    Article  Google Scholar 

  109. Wool, R. P. Self-healing materials: a review. Soft Matter 4, 400–418 (2008).

    Article  Google Scholar 

  110. Cao, Y. et al. Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019).

    Article  Google Scholar 

  111. Jiang, J. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019).

    Article  Google Scholar 

  112. Wen, F., Jiang, J. & Fan, J. A. Robust freeform metasurface design based on progressively growing generative networks. ACS Photon. 7, 2098–2104 (2020).

    Article  Google Scholar 

  113. Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  114. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article  Google Scholar 

  115. Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

  116. Ee, H.-S. & Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

J.S.H. acknowledges support from the National Research Foundation Singapore (NRFF2017-07), Ministry of Education Singapore (MOE2016-T3-1-004) and Institute for Health Innovation and Technology grants.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and commented on the manuscript.

Corresponding authors

Correspondence to Cheng-Wei Qiu or John S. Ho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tian, X., Qiu, CW. et al. Metasurfaces for bioelectronics and healthcare. Nat Electron 4, 382–391 (2021). https://doi.org/10.1038/s41928-021-00589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00589-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing