Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites

An Author Correction to this article was published on 09 June 2021

This article has been updated

Abstract

Magnetoelectric systems could be used to develop magnetoelectric random access memory and microsensor devices. One promising system is the two-phase 3-1-type multiferroic nanocomposite in which a one-dimensional magnetic column is embedded in a three-dimensional ferroelectric matrix. However, it suffers from a number of limitations including unwanted leakage currents and the need for biasing with a magnetic field. Here we show that the addition of an antiferromagnet to a 3-1-type multiferroic nanocomposite can lead to a large, self-biased magnetoelectric effect at room temperature. Our three-phase system is composed of a ferroelectric Na0.5Bi0.5TiO3 matrix in which ferrimagnetic NiFe2O4 nanocolumns coated with antiferromagnetic p-type NiO are embedded. This system, which is self-assembled, exhibits a magnetoelectric coefficient of up to 1.38 × 10–9 s m1, which is large enough to switch the magnetic anisotropy from the easy axis (Keff = 0.91 × 104 J m–3) to the easy plane (Keff = –1.65 × 104 J m3).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of a comparison between three-phase and two-phase nanocomposites.
Fig. 2: Characterizations of leakage.
Fig. 3: STEM characterizations.
Fig. 4: Magnetic hysteresis loops measured with in situ electric voltage.
Fig. 5: Dependence of EB effect on the applied voltage.
Fig. 6: Voltage-induced strain and its impact on magnetic anisotropy energy of NiO.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. 1.

    Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  Google Scholar 

  2. 2.

    Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article  Google Scholar 

  3. 3.

    Wang, K. L., Lee, H. & Amiri, P. K. Magnetoelectric random access memory-based circuit design by using voltage-controlled magnetic anisotropy in magnetic tunnel junctions. IEEE Trans. Nanotechnol. 14, 992–997 (2015).

    Article  Google Scholar 

  4. 4.

    Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  Google Scholar 

  5. 5.

    Vaz, C. A. F., Hoffman, J., Ahn, C. H. & Ramesh, R. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010).

    Article  Google Scholar 

  6. 6.

    Chen, A., Su, Q., Han, H., Enriquez, E. & Jia, Q. Metal oxide nanocomposites: a perspective from strain, defect, and interface. Adv. Mater. 31, 1803241 (2019).

    Article  Google Scholar 

  7. 7.

    Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  Google Scholar 

  8. 8.

    Nan, C.-W., Liu, G., Lin, Y. & Chen, H. Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

    Article  Google Scholar 

  9. 9.

    Liu, G., Nan, C.-W. & Sun, J. Coupling interaction in nanostructured piezoelectric/magnetostrictive multiferroic complex films. Acta Mater. 54, 917–925 (2006).

    Article  Google Scholar 

  10. 10.

    Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

    Article  Google Scholar 

  11. 11.

    Nogue, J. & Schuller, I. K. Exch’ange bias. J. Magn. Magn. Mater. 192, 203–232 (2002).

  12. 12.

    Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Article  Google Scholar 

  13. 13.

    Dix, N. et al. On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95, 062907 (2009).

    Article  Google Scholar 

  14. 14.

    Wu, R. et al. Design of a vertical composite thin film system with ultralow leakage to yield large converse magnetoelectric effect. ACS Appl. Mater. Interfaces 10, 18237–18245 (2018).

    Article  Google Scholar 

  15. 15.

    Zhang, J. X. et al. A novel nanostructure and multiferroic properties in Pb(Zr0.52Ti0.48)O3/CoFe2O4 nanocomposite films grown by pulsed-laser deposition. J. Phys. D. 41, 235405 (2008).

    Article  Google Scholar 

  16. 16.

    Kim, D. H., Ning, S. & Ross, C. A. Self-assembled multiferroic perovskite–spinel nanocomposite thin films: epitaxial growth, templating and integration on silicon. J. Mater. Chem. C 7, 9128–9148 (2019).

    Article  Google Scholar 

  17. 17.

    Zheng, H. et al. Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747–2752 (2006).

    Article  Google Scholar 

  18. 18.

    Eshghinejad, A. et al. Piezoelectric and piezomagnetic force microscopies of multiferroic BiFeO3-LiMn2O4 heterostructures. J. Appl. Phys. 116, 066805 (2014).

    Article  Google Scholar 

  19. 19.

    Wang, L. et al. Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO3–CoFe2O4 thin films. J. Mater. Chem. C 8, 3527–3535 (2020).

    Article  Google Scholar 

  20. 20.

    Zhang, K. H. L. et al. Electronic structure and band alignment at the NiO and SrTiO3 p–n heterojunctions. ACS Appl. Mater. Interfaces 9, 26549–26555 (2017).

    Article  Google Scholar 

  21. 21.

    Yi, D. et al. Tuning perpendicular magnetic anisotropy by oxygen octahedral rotations in (La1–xSrxMnO3)/(SrIrO3) superlattices. Phys. Rev. Lett. 119, 077201 (2017).

    Article  Google Scholar 

  22. 22.

    Johnson, M. T., Bloemen, P. J. H., Broeder, F. J. A. D. & Vries, J. J. D. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409–1458 (1996).

    Article  Google Scholar 

  23. 23.

    Zhang, J. et al. The magnetization reversal mechanism in electrospun tubular nickel ferrite: a chain-of-rings model for symmetric fanning. Nanoscale 11, 13824–13831 (2019).

    Article  Google Scholar 

  24. 24.

    Shirahata, Y. et al. Electric-field switching of perpendicularly magnetized multilayers. NPG Asia Mater. 7, e198 (2015).

    Article  Google Scholar 

  25. 25.

    Hu, J.-M. et al. Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 15, 616–622 (2015).

    Article  Google Scholar 

  26. 26.

    Wu, R. et al. All-oxide nanocomposites to yield large, tunable perpendicular exchange bias above room temperature. ACS Appl. Mater. Interfaces 10, 42593–42602 (2018).

    Article  Google Scholar 

  27. 27.

    Lage, E. et al. Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523–529 (2012).

    Article  Google Scholar 

  28. 28.

    Ahlawat, A. et al. Electric field poling induced self-biased converse magnetoelectric response in PMN-PT/NiFe2O4 nanocomposites. Appl. Phys. Lett. 111, 262902 (2017).

    Article  Google Scholar 

  29. 29.

    Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 105, 904–913 (1957).

    Article  Google Scholar 

  30. 30.

    Fritsch, D. & Ederer, C. First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys. Rev. B 86, 014406 (2012).

    Article  Google Scholar 

  31. 31.

    Fritsch, D. & Ederer, C. Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles. Phys. Rev. B 82, 104117 (2010).

    Article  Google Scholar 

  32. 32.

    Chong, Y. T., Yau, E. M. Y., Nielsch, K. & Bachmann, J. Direct atomic layer deposition of ternary ferrites with various magnetic properties. Chem. Mater. 22, 6506–6508 (2010).

    Article  Google Scholar 

  33. 33.

    Schrön, A., Rödl, C. & Bechstedt, F. Crystalline and magnetic anisotropy of the 3d-transition metal monoxides MnO, FeO, CoO, and NiO. Phys. Rev. B 86, 115134 (2012).

    Article  Google Scholar 

  34. 34.

    Roth, W. L. Neutron and optical studies of domains in NiO. J. Appl. Phys. 31, 2000–2011 (1960).

    Article  Google Scholar 

  35. 35.

    Roth, W. L. Multispin axis structures for antiferromagnets. Phys. Rev. 111, 772–781 (1958).

    Article  Google Scholar 

  36. 36.

    Uchida, E. et al. Magnetic anisotropy of single crystals of NiO and MnO. J. Phys. Soc. Jpn 23, 1197–1203 (1967).

    Article  Google Scholar 

  37. 37.

    Kondoh, H. & Takeda, T. Observation of antiferromagnetic domains in nickel oxide. J. Phys. Soc. Jpn 19, 2041–2051 (1964).

    Article  Google Scholar 

  38. 38.

    Machado, F. L. A. et al. Spin-flop transition in the easy-plane antiferromagnet nickel oxide. Phys. Rev. B 95, 104418 (2017).

    Article  Google Scholar 

  39. 39.

    Phillips, T. G. & White, R. L. Single-ion magnetostriction in the iron group monoxides from the strain dependence of electron-paramagnetic-resonance spectra. Phys. Rev. 153, 616–620 (1967).

    Article  Google Scholar 

  40. 40.

    Fasaki, I., Koutoulaki, A., Kompitsas, M. & Charitidis, C. Structural, electrical and mechanical properties of NiO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 257, 429–433 (2010).

    Article  Google Scholar 

  41. 41.

    Bengone, O., Alouani, M., Blöchl, P. & Hugel, J. Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO. Phys. Rev. B 62, 16392–16401 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Leverhulme Trust grant no. RPG-2015-017, EPSRC grant nos. EP/N004272/1 and EP/M000524/1, the Royal Academy of Engineering Chair in Emerging Technologies grant no. CiET1819\24, EU grant no. H2020-MSCA-IF-2016 (745886)-MuStMAM and the Isaac Newton Trust (grant no. RG96474). This work was supported by the National Key R&D Program of China (grant no. 2017YFA0206303) and the National Natural Science Foundation of China (grant nos. 11975035 and 51731001). The US–UK collaborative effort was funded by the U.S. National Science Foundation grant nos. ECCS-1902644 (Purdue University) and ECCS-1902623 (University at Buffalo, SUNY), U.S. Office of Naval Research grant no. N00014-20-1-2043 (Purdue University) and the EPRSC grant no. EP/T012218/1 (University of Cambridge). RBS measurements were performed at the Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is managed by Triad National Security, LLC for the US Department of Energy’s NNSA, under contract 89233218CNA000001.

Author information

Affiliations

Authors

Contributions

R.W. and J.L.M.-D. conceived the experiments and supervised the research. R.W. made the samples and carried out the XRD and AFM characterizations and magnetic properties measurement. D.Z., P.L., X.G. and H.W. performed STEM imaging and EDX mapping. Jie Yang, R.W., G.T., Z.R. and Jinbo Yang contributed to the DFT calculation. S.Z., Z.Z. and M.L. contributed to the FMR measurement. X.W., H.Z. and Q.J. contributed to the Hall effect measurement. A.K. contributed to the PFM and c-AFM measurements. Y.W. and W.L. contributed to the RBS characterization. R.W., C.Y. and K.H.L.Z. contributed to the electric measurement and analysis. R.W., T.M. and J.L.M.-D. contributed to the data analysis and wrote the manuscript. All the authors contributed to reviewing and revising the manuscript.

Corresponding authors

Correspondence to Rui Wu or Tuhin Maity or Judith L. MacManus-Driscoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Morgan Trassin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Zhang, D., Maity, T. et al. Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites. Nat Electron 4, 333–341 (2021). https://doi.org/10.1038/s41928-021-00584-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing