Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces

Abstract

Digitally programmable metasurfaces are of potential use in wireless multiplexing techniques because they can encode and transmit information without using traditional radio-frequency components such as antennas or mixers. Space–time-coding digital metasurfaces can, in particular, manipulate the propagation direction and harmonic power distribution of electromagnetic waves, making them suitable for space- and frequency-division multiplexing. However, while digital metasurfaces have been used for wireless communication, these systems could implement signal modulation only in the time domain. Here, we report a wireless communication scheme that uses space–time-coding digital metasurfaces to implement both space- and frequency-division multiplexing. By encoding space–time-coding matrices through multiple channels, digital messages can be directly transmitted to different users at different locations simultaneously, without the need for digital-to-analogue conversion and mixing processes. To illustrate this approach, we have built a dual-channel wireless communication system based on a two-bit space–time-coding digital metasurface and use it to transmit two different pictures to two users simultaneously in real time.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual illustration of the space- and frequency-multiplexing multi-channel direct data transmissions using an STC digital metasurface.
Fig. 2: The optimized 2-bit STC matrices for dual-channel direct information encoding.
Fig. 3: Schematic of the dual-channel wireless communication system based on the STC digital metasurface.
Fig. 4: Experimental scenario of the dual-channel wireless communication system based on the STC digital metasurface.
Fig. 5: Measured radiation patterns of the four types of STC matrix for dual-channel direct information transmissions.
Fig. 6: Experimental validation of the reprogrammable features of the dual-channel wireless communication system.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Google Scholar 

  2. 2.

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Google Scholar 

  4. 4.

    Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Google Scholar 

  5. 5.

    Glybovski, S. B., Tretyakov, S. A., Belov, P. A., Kivshar, Y. S. & Simovski, C. R. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016).

    MathSciNet  Google Scholar 

  6. 6.

    Sun, S. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223–6229 (2012).

    Google Scholar 

  7. 7.

    Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).

    Google Scholar 

  8. 8.

    Gao, L. H. et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl. 4, e324 (2015).

    Google Scholar 

  9. 9.

    Liu, S. et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci. Appl. 5, e16076 (2016).

    Google Scholar 

  10. 10.

    Zhang, L. et al. Realization of low scattering for a high-gain Fabry–Perot antenna using coding metasurface. IEEE Trans. Antennas Propag. 65, 3374–3383 (2017).

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Moccia, M. et al. Coding metasurfaces for diffuse scattering: scaling laws, bounds and suboptimal design. Adv. Opt. Mater. 5, 1700455 (2017).

    Google Scholar 

  12. 12.

    Zhang, L., Liu, S., Li, L. & Cui, T. J. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam–Berry coding metasurfaces. ACS Appl. Mater. Interfaces 9, 36447–36455 (2017).

    Google Scholar 

  13. 13.

    Liu, S. et al. Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces. ACS Photonics 3, 1968–1977 (2016).

    Google Scholar 

  14. 14.

    Zhang, L. et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater. 28, 1802205 (2018).

    Google Scholar 

  15. 15.

    Xie, B. et al. Coding acoustic metasurfaces. Adv. Mater. 29, 1603507 (2017).

    Google Scholar 

  16. 16.

    Ma, M. et al. Optical information multiplexing with nonlinear coding metasurfaces. Laser Photon. Rev. 13, 1900045 (2019).

    Google Scholar 

  17. 17.

    Wan, X., Qi, M. Q., Chen, T. Y. & Cui, T. J. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci. Rep. 6, 20663 (2016).

    Google Scholar 

  18. 18.

    Yang, H. et al. A programmable metasurface with dynamic polarization, scattering and focusing control. Sci. Rep. 6, 35692 (2016).

    Google Scholar 

  19. 19.

    Huang, C. et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 7, 42302 (2017).

    Google Scholar 

  20. 20.

    Dai, J. Y., Zhao, J., Cheng, Q. & Cui, T. J. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl. 7, 90 (2018).

    Google Scholar 

  21. 21.

    Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Google Scholar 

  22. 22.

    Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

    Google Scholar 

  23. 23.

    Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).

    Google Scholar 

  24. 24.

    Xia, J. P. et al. Programmable coding acoustic topological insulator. Adv. Mater. 30, 1805002 (2018).

    Google Scholar 

  25. 25.

    Zeng, H. et al. Broadband terahertz reconfigurable metasurface based on 1-bit asymmetric coding metamaterial. Opt. Commun. 458, 124770 (2020).

    Google Scholar 

  26. 26.

    Cui, T. J., Liu, S. & Li, L. L. Information entropy of coding metasurface. Light Sci. Appl. 5, e16172 (2016).

    Google Scholar 

  27. 27.

    Liu, S. et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv. Sci. 3, 1600156 (2016).

    Google Scholar 

  28. 28.

    Cui, T. J., Liu, S. & Zhang, L. Information metamaterials and metasurfaces. J. Mater. Chem. C 5, 3644–3668 (2017).

    Google Scholar 

  29. 29.

    Zhao, J. et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci. Rev. 6, 231–238 (2019).

    Google Scholar 

  30. 30.

    Dai, J. Y. et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface. Adv. Mater. Technol. 4, 1900044 (2019).

    Google Scholar 

  31. 31.

    Dai, J. Y. et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Trans. Antennas Propag. 68, 1618–1627 (2020).

    Google Scholar 

  32. 32.

    Tang, W. et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter. Electron. Lett. 55, 417–420 (2019).

    Google Scholar 

  33. 33.

    Tang, W. et al. Wireless communications with programmable metasurface: new paradigms, opportunities and challenges on transceiver design. IEEE Wirel. Commun. 27, 180–187 (2020).

    Google Scholar 

  34. 34.

    Cui, T. J., Liu, S., Bai, G. D. & Ma, Q. Direct transmission of digital message via programmable coding metasurface. Research 2019, 1–12 (2019).

    Google Scholar 

  35. 35.

    Wan, X. et al. Multichannel direct transmissions of near-field information. Light Sci. Appl. 8, 60 (2019).

    Google Scholar 

  36. 36.

    Basar, E. et al. Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7, 116753–116773 (2019).

    Google Scholar 

  37. 37.

    Di Renzo, M. et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research and road ahead. IEEE J. Sel. Areas Commun. 38, 2450–2525 (2020).

    Google Scholar 

  38. 38.

    Huang, C. et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 18, 4157–4170 (2019).

    Google Scholar 

  39. 39.

    Wu, Q. & Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 18, 5394–5409 (2019).

    Google Scholar 

  40. 40.

    Wu, Q. & Zhang, R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58, 106–112 (2020).

    Google Scholar 

  41. 41.

    Han, Y. et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI. IEEE Trans. Veh. Technol. 68, 8238–8242 (2019).

    Google Scholar 

  42. 42.

    Tang, W. et al. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement. IEEE Trans. Wireless Commun. 20, 421–439 (2021).

    Google Scholar 

  43. 43.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Google Scholar 

  44. 44.

    Hadad, Y., Sounas, D. L. & Alù, A. Space–time gradient metasurfaces. Phys. Rev. B 92, 100304(R) (2015).

    Google Scholar 

  45. 45.

    Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015).

    Google Scholar 

  46. 46.

    Correas-Serrano, D. et al. Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Antennas Wirel. Propag. Lett. 15, 1529–1532 (2016).

    Google Scholar 

  47. 47.

    Salary, M. M., Jafsecurear-Zanjani, S. & Mosallaei, H. Electrically tunable harmonics in time-modulated metasurfaces for wavefront engineering. New J. Phys. 20, 123023 (2018).

    Google Scholar 

  48. 48.

    Ramaccia, D., Sounas, D. L., Alù, A., Toscano, A. & Bilotti, F. Doppler cloak restores invisibility to objects in relativistic motion. Phys. Rev. B 95, 075113 (2017).

    Google Scholar 

  49. 49.

    Wu, Z. & Grbic, A. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag. 68, 1599–1606 (2020).

    Google Scholar 

  50. 50.

    Ramaccia, D., Sounas, D. L., Alù, A., Toscano, A. & Bilotti, F. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces. IEEE Trans. Antennas Propag. 68, 1607–1617 (2020).

    Google Scholar 

  51. 51.

    Zhang, L. et al. Space–time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

    Google Scholar 

  52. 52.

    Zhang, L. et al. Breaking reciprocity with space–time-coding digital metasurfaces. Adv. Mater. 31, 1904069 (2019).

    Google Scholar 

  53. 53.

    Zhang, L. et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Trans. Antennas Propag. 68, 2981–2992 (2020).

    Google Scholar 

  54. 54.

    Goldsmith, A. Wireless Communications (Cambridge Univ. Press, 2005).

    Google Scholar 

  55. 55.

    Daly, M. P. & Bernhard, J. T. Directional modulation technique for phased arrays. IEEE Trans. Antennas Propag. 57, 2633–2640 (2009).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202 and 2017YFA0700203), the National Natural Science Foundation of China (61631007, 61571117, 61501112, 61501117, 61522106, 61731010, 61735010, 61722106, 61701107 and 61701108), the National Science Foundation of China for Distinguished Young Scholars (61625106) and the 111 Project (111-2-05).

Author information

Affiliations

Authors

Contributions

T.J.C. suggested the designs and planned and supervised the work, in consultation with Q.C. and S.J. L.Z. conceived the idea and carried out the theoretical analysis and numerical simulations. L.Z., M.Z.C., W.T. and J.Y.D. built the system and performed the experimental measurements. L.Z., L.M. and X.Y.Z. performed the data analysis. L.Z. and T.J.C. wrote the manuscript. All authors discussed the theoretical aspects and numerical simulations, interpreted the results and reviewed the manuscript.

Corresponding authors

Correspondence to Shi Jin, Qiang Cheng or Tie Jun Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Ertugrul Basar, Shuai Nie and Din Ping Tsai for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Notes 1–6.

Supplementary Video 1

The process of transmitting two different colour pictures through the dual-channel wireless communication system.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, M.Z., Tang, W. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat Electron 4, 218–227 (2021). https://doi.org/10.1038/s41928-021-00554-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing