Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates


Electronics devices that operate in outer space and nuclear reactors require radiation-hardened transistors. However, high-energy radiation can damage the channel, gate oxide and substrate of a field-effect transistor (FET), and redesigning all vulnerable parts to make them more resistant to total ionizing dose irradiation has proved challenging. Here, we report a radiation-hardened FET that uses semiconducting carbon nanotubes as the channel material, an ion gel as the gate and polyimide as the substrate. The FETs exhibit a radiation tolerance of up to 15 Mrad at a dose rate of 66.7 rad s−1, which is notably higher than the tolerance of silicon-based transistors (1 Mrad). The devices can also be used to make complementary metal–oxide–semiconductor (CMOS)-like inverters with similarly high tolerances. Furthermore, we show that radiation-damaged FETs can be recovered by annealing at a moderate temperature of 100 °C for 10 min.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The radiation-immune FET.
Fig. 2: TID-dependent property evolution of ion gel CNT FETs and CMOS-like inverters fabricated on Si substrates.
Fig. 3: TID-dependent property evolution of ion gel CNT FETs and CMOS-like inverters fabricated on polyimide substrates.
Fig. 4: Radiation damage repairing of ion gel CNT FETs and CMOS-like inverters via annealing at moderate temperature.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Schaller, R. R. Moore’s law: past, present and future. IEEE Spectr. 34, 52–59 (1997).

    Article  Google Scholar 

  2. 2.

    Claeys, C. & Simoen, E. Radiation Effects in Advanced Semiconductor Materials and Devices (Springer, 2013).

  3. 3.

    Peck, D. S. & Schmid, E. R. Effects of radiation on transistors in the first telstar satellite. Nature 199, 741–744 (1963).

    Article  Google Scholar 

  4. 4.

    Fleetwood, D. M. Evolution of total ionizing dose effects in MOS devices with Moore’s law scaling. IEEE Trans. Nucl. Sci. 65, 1465–1481 (2018).

    Article  Google Scholar 

  5. 5.

    Barnaby, H. J. Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans. Nucl. Sci. 53, 3103–3121 (2006).

    Article  Google Scholar 

  6. 6.

    Meyyappan, M., Koehne, J. E. & Han, J.-W. Nanoelectronics and nanosensors for space exploration. MRS Bull. 40, 822–828 (2015).

    Article  Google Scholar 

  7. 7.

    Smith, B. W. & Luzzi, D. E. Knock-on damage in single wall carbon nanotubes by electron irradiation. In AIP Conference Proceedings Vol. 486, 360–363 (AIP, 1999).

  8. 8.

    Smith, B. & Luzzi, D. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509–3515 (2001).

    Article  Google Scholar 

  9. 9.

    Cress, C. D., McMorrow, J. J., Robinson, J. T., Friedman, A. L. & Landi, B. J. Radiation effects in single-walled carbon nanotube thin-film-transistors. IEEE Trans. Nucl. Sci. 57, 3040–3045 (2010).

    Google Scholar 

  10. 10.

    Francis, S. A., Cress, C. D., McClory, J. W., Moore, E. A. & Petrosky, J. C. Characterization of radiation damage in carbon nanotube field-effect transistors. IEEE Trans. Nucl. Sci. 60, 4087–4093 (2013).

    Article  Google Scholar 

  11. 11.

    Zhao, Y. et al. Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. Carbon 108, 363–371 (2016).

    Article  Google Scholar 

  12. 12.

    McMorrow, J. J. et al. Radiation-hard complementary integrated circuits based on semiconducting single-walled carbon nanotubes. ACS Nano. 11, 2992–3000 (2017).

    Article  Google Scholar 

  13. 13.

    Zhu, M.-G., Zhang, Z. & Peng, L.-M. High-performance and radiation-hard carbon nanotube complementary static random-access memory. Adv. Electron. Mater. 5, 1900313 (2019).

    Article  Google Scholar 

  14. 14.

    Park, B. et al. Solution-processed rad-hard amorphous metal-oxide thin-film transistors. Adv. Funct. Mater. 28, 1802717 (2018).

    Article  Google Scholar 

  15. 15.

    Cramer, T. et al. Radiation-tolerant flexible large-area electronics based on oxide semiconductors. Adv. Electron. Mater. 2, 1500489 (2016).

    Article  Google Scholar 

  16. 16.

    Zhang, C. X. et al. Total ionizing dose effects on hBN encapsulated graphene devices. IEEE Trans. Nucl. Sci. 61, 2868–2873 (2014).

    Article  Google Scholar 

  17. 17.

    Kim, T. Y. et al. Irradiation effects of high-energy proton beams on MoS2 field effect transistors. ACS Nano 8, 2774–2781 (2014).

    Article  Google Scholar 

  18. 18.

    Arnold, A. J., Shi, T., Jovanovic, I. & Das, S. Extraordinary radiation hardness of atomically thin MoS2. ACS Appl. Mater. Interfaces 11, 8391–8399 (2019).

    Article  Google Scholar 

  19. 19.

    Schwank, J. R., Ferlet-Cavrois, V., Shaneyfelt, M. R., Paillet, P. & Dodd, P. E. Radiation effects in SOI technologies. IEEE Trans. Nucl. Sci. 50, 522–538 (2003).

    Article  Google Scholar 

  20. 20.

    Flament, O., Torres, A. & Ferlet-Cavrois, V. Bias dependence of FD transistor response to total dose irradiation. IEEE Trans. Nucl. Sci. 50, 2316–2321 (2003).

    Article  Google Scholar 

  21. 21.

    Han, J. W., Ahn, J. H. & Choi, Y. K. Damage immune field effect transistors with vacuum gate dielectric. J. Vac. Sci. Technol. B 29, 011014 (2011).

    Article  Google Scholar 

  22. 22.

    Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  Google Scholar 

  23. 23.

    Cho, J. H. et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mat. 20, 686–690 (2008).

    Article  Google Scholar 

  24. 24.

    Choi, Y. et al. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits. Adv. Funct. Mater. 28, 1802610 (2018).

    Article  Google Scholar 

  25. 25.

    Zhao, J. et al. Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. J. Mater. Chem. 22, 20747–20753 (2012).

    Article  Google Scholar 

  26. 26.

    Zhao, J., Gao, Y., Lin, J., Chen, Z. & Cui, Z. Printed thin-film transistors with functionalized single-walled carbon nanotube inks. J. Mater. Chem. 22, 2051–2056 (2012).

    Article  Google Scholar 

  27. 27.

    Sun, X., Luo, H. & Dai, S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 112, 2100–2128 (2011).

    Article  Google Scholar 

  28. 28.

    Allen, D. et al. An investigation of the radiochemical stability of ionic liquids. Green Chem. 4, 152–158 (2002).

    Article  Google Scholar 

  29. 29.

    Benedetto, J. M., Boesch, H. E., McLean, F. B. & Mize, J. P. Hole removal in thin-gate MOSFETs by tunneling. IEEE Trans. Nucl. Sci. 32, 3916–3920 (1985).

    Article  Google Scholar 

  30. 30.

    Boesch, J. H. E. & McGarrity, J. M. Charge Yield and Dose Effects in MOS Capacitors at 80K (Ft Belvoir Defense Technical Information Center, 1977).

  31. 31.

    HeY. & LodgeT. P. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem. Commun. 2007, 2732–2734 (2007).

    Article  Google Scholar 

  32. 32.

    He, Y. & Lodge, T. P. Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 41, 167–174 (2008).

    Article  Google Scholar 

  33. 33.

    Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992).

    Article  Google Scholar 

  34. 34.

    Krasheninnikov, A. V., Miyamoto, Y. & Tomanek, D. Role of electronic excitations in ion collisions with carbon nanostructures. Phys. Rev. Lett. 99, 016104 (2007).

    Article  Google Scholar 

  35. 35.

    Geier, M. L. et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10, 944–948 (2015).

    Article  Google Scholar 

  36. 36.

    Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

    Article  Google Scholar 

  37. 37.

    Zhong, D. et al. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 1, 40–45 (2018).

    Article  Google Scholar 

  38. 38.

    Krasheninnikov, A. V. & Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).

    Article  Google Scholar 

  39. 39.

    White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).

    Article  Google Scholar 

  40. 40.

    Xiao, H. et al. Polarity tuning of carbon nanotube transistors by chemical doping for printed flexible complementary metal-oxide semiconductor (CMOS)-like inverters. Carbon 147, 566–573 (2019).

    Article  Google Scholar 

  41. 41.

    Rask, J. et al. Space Faring: The Radiation Challenge Module 3: Radiation Countermeasures Educator Guide 9 (NASA, 2008).

  42. 42.

    Fleetwood, D. M. Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices. IEEE Trans. Nucl. Sci. 60, 1706–1730 (2013).

    Article  Google Scholar 

  43. 43.

    Schlomka, J.-P. et al. X-ray diffraction from Si/Ge layers: diffuse scattering in the region of total external reflection. Phys. Rev. B 51, 2311 (1995).

    Article  Google Scholar 

  44. 44.

    Francis, L. A. et al. A low-power and in situ annealing technique for the recovery of active devices after proton irradiation. In EPJ Web of Conferences Vol. 170, 01006 (EDP Sciences, 2018).

  45. 45.

    Gwyn, C. W. Model for radiation‐induced charge trapping and annealing in the oxide layer of MOS devices. J. Appl. Phys. 40, 4886–4892 (1969).

    Article  Google Scholar 

  46. 46.

    Snapp, W. DARPA rad-hard-by-design program results. In Proc. GOMAC Tech Conference (GOMACHTech, 2006).

  47. 47.

    Paillet, P. et al. Total ionizing dose effects on deca-nanometer fully depleted SOI devices. IEEE Trans. Nucl. Sci. 52, 2345–2352 (2005).

    Article  Google Scholar 

  48. 48.

    Liu, S. T. et al. Total dose radiation response of a 45-nm SOI technology. In 2010 IEEE International SOI Conference 1–2 (IEEE, 2010).

  49. 49.

    Mamouni, F. E. et al. Fin-width dependence of ionizing radiation-induced subthreshold-swing degradation in 100-nm-gate-length finFETs. IEEE Trans. Nucl. Sci. 56, 3250–3255 (2009).

    Article  Google Scholar 

  50. 50.

    Zare Bidoky, F. Enhancement of the Dynamic Performance of Electrolyte-gated Transistors: Toward Fast-switching, Low-operating Voltage Printed Electronics (Univ. Minnesota, 2019); http://hdl.handle.net/11299/206368

Download references


This work was supported by the National Key Research & Development Program (grants 2016YFA0201901 and 2016YFB0401100) and the National Natural Science Foundation of China (grant nos. 6188102 and 61874132).

Author information




Z.Z. proposed and supervised the project. Z.Z., L.-M.P. and J.Z. designed the experiment. M.Z. and H.X. performed all of the device/circuit fabrication and performance characterization. M.Z. and P.S. performed the TID characterization. G.Y. and J.J. performed the TID simulation using TCAD. M.Z., H.X., Z.C., Z.Z., J.Z. and L.-M.P. analysed the data and co-wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jianwen Zhao or Zhiyong Zhang or Lian-Mao Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Xiao, H., Yan, G. et al. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat Electron 3, 622–629 (2020). https://doi.org/10.1038/s41928-020-0465-1

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing