Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bipolar device fabrication using a scanning tunnelling microscope

Abstract

Hydrogen-resist lithography with the tip of a scanning tunnelling microscope can be used to fabricate atomic-scale dopant devices in silicon substrates and could potentially be used to build a dopant-based quantum computer. However, all devices fabricated so far have been based on the n-type dopant precursor phosphine. Here, we show that diborane can be used as a p-type dopant precursor, allowing p-type and bipolar dopant devices to be created. Characterization of diborane δ-layers reveals that similar mobilities and densities can be achieved as for phosphine, with sheet resistivities as low as 300 Ω □−1. Scanning tunnelling microscope imaging and transport measurements of a 5.5-nm-wide p-type dopant nanowire give an estimated upper bound of 2 nm for the lithographic resolution of the p-type dopant profiles. By combining our p-type doping approach with established phosphine-based n-type doping, we fabricate a 100-nm-wide p–n junction and show that its electrical behaviour is similar to that of an Esaki diode.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adsorption and surface reactions of diborane with the Si(001) and H:Si(001) surface.
Fig. 2: Sample preparation and SIMS measurements of boron doped δ-layers.
Fig. 3: Transport properties of boron δ-layers.
Fig. 4: Electrical measurements of STM defined boron-doped nanowire/gap device.
Fig. 5: Fabrication of a bipolar dopant device with STM lithography.

Similar content being viewed by others

Data availability

The data that support the findings of this study (STM images, raw measurement data, raw SIMS data) are available through Zenodo at https://doi.org/10.5281/zenodo.3881492. Further information is available from the corresponding author upon reasonable request.

References

  1. Frank, D. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Google Scholar 

  2. Ho, J. et al. Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 7, 62–67 (2008).

    Article  Google Scholar 

  3. Colombeau, B. et al. Advanced CMOS devices: challenges and implant solutions. Phys. Stat. Sol. A 211, 101–108 (2014).

    Google Scholar 

  4. Duffy, R. et al. Access resistance reduction in Ge nanowires and substrates based on non-destructive gas-source dopant in-diffusion. J. Mat. Chem. C 2, 9248–9257 (2014).

    Article  Google Scholar 

  5. Muhonen, J. et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9, 986–991 (2014).

  6. Roche, B. et al. A two-atom electron pump. Nat. Commun. 4, 1581 (2013).

    Article  Google Scholar 

  7. Schofield, S. et al. Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104 (2003).

    Article  Google Scholar 

  8. Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

    Article  Google Scholar 

  9. Simmons, M. et al. Scanning probe microscopy for silicon device fabrication. Mol. Simul. 31, 505–514 (2005).

    Article  Google Scholar 

  10. van der Heijden, J. et al. Probing the spin states of a single acceptor atom. Nano Lett. 14, 1492–1496 (2015).

    Article  Google Scholar 

  11. Wang, Y., Shan, J. & Hamers, R. J. Combined scanning tunneling microscopy and infrared spectroscopy study of the interaction of diborane with Si(001). J. Vacuum Sci. Technol. B 14, 1038–1042 (1996).

    Article  Google Scholar 

  12. Yu, L., Vitkavage, D. J. & Meyerson, B. Doping reaction of PH3 and B2H6 with Si(100). J. Appl. Phys. 59, 4032–4037 (1986).

  13. Oura, K. et al. Hydrogen adsorption on Si(100)-2 × 1 surfaces studied by elastic recoil detection analysis. Phys. Rev. B 41, 1200–1203 (1990).

  14. Dürr, M., Hu, Z., Biederman, A., Höfer, U. & Heinz, T. F. Real-space study of the pathway for dissociative adsorption of H2 on Si(001). Phys. Rev. Lett. 88, 046104 (2002).

  15. Wang, Y. & Hamers, R. Boron-induced reconstructions of Si(001) investigated by scanning tunneling microscopy. J. Vacuum. Sci. Technol. A 13, 1431–1437 (1995).

    Article  Google Scholar 

  16. Wilson, H. et al. Thermal dissociation and desorption of PH3 on Si(001): a reinterpretation of spectroscopic data. Phys. Rev. B 74, 195310 (2006).

    Article  Google Scholar 

  17. Liu, Z., Zhang, Z. & Zhu, X. Atomic structures of boron-induced protrusion features on Si(100) surfaces. Phys. Rev. B 77, 035322 (2008).

    Article  Google Scholar 

  18. Goh, K., Oberbeck, ls., Simmons, M., Hamilton, A. & Clark, R. Effect of encapsulation temperature on Si:P δ -doped layers. Appl. Phys. Lett. 85, 4953–4955 (2004).

    Article  Google Scholar 

  19. Keizer, J., Koelling, S., Koenraad, P. & Simmons, M. Suppressing segregation in highly phosphorus doped silicon monolayers. ACS Nano 9, 12537–12541 (2015).

    Article  Google Scholar 

  20. Luo, X., Zhang, S. & Wei, S.-H. Understanding ultrahigh doping: the case of boron in silicon. Phys. Rev. Lett. 90, 026103 (2003).

    Article  Google Scholar 

  21. Bustarret, E. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006).

    Article  Google Scholar 

  22. Weir, B. et al. Electrical characterization of an ultrahigh concentration boron delta-doping layer. Appl. Phys. Lett. 65, 737–739 (1994).

    Article  Google Scholar 

  23. Dai, P., Zhang, P. & Sarachik, M. Electrical conductivity of metallic Si:B near the metal-insulator transition. Phys. Rev. B 45, 3984–3994 (1992).

    Article  Google Scholar 

  24. Pascher, N., Hennel, S., Mueller, S. & Fuhrer, A. Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography. N. J. Phys. 18, 083001 (2016).

    Article  Google Scholar 

  25. Arrhenius, S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889).

    Google Scholar 

  26. Ryu, H. et al. Atomistic modeling of metallic nanowires in silicon. Nanoscale 5, 8666–8674 (2013).

    Article  Google Scholar 

  27. Oehme, M. et al. Si Esaki diodes with high peak to valley current ratios. Appl. Phys. Lett. 95, 242109–242111 (2009).

    Article  Google Scholar 

  28. Fuhrer, A., Füchsle, M., Reusch, T., Weber, B. & Simmons, M. Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. Nano Lett. 9, 707–710 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from EU-FET grants SiAM 610637, PAMS 610446 and from the Swiss NCCR QSIT. We thank D. Widmer and G. Meyer for technical help with the STM system and software and N. Pascher, H. Schmid and J. Cole for discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.F. designed the study and directed the project. S.A.K. and A.F. developed the diborane doping procedures, fabricated and measured the Hall bar devices, S.A.K., T.S. and A.F. developed the diborane lithography process, A.F. and T.S. designed, fabricated and measured the STM patterned devices. B.D., C.F. and T.S. performed the SIMS experiments and analysed the SIMS data. T.S., A.F. and S.A.K. analysed the device data and wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Andreas Fuhrer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Škereň, T., Köster, S.A., Douhard, B. et al. Bipolar device fabrication using a scanning tunnelling microscope. Nat Electron 3, 524–530 (2020). https://doi.org/10.1038/s41928-020-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-0445-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing