Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque

Abstract

The electrical manipulation of magnetization and exchange bias in antiferromagnet/ferromagnet thin films could be of use in the development of the next generation of spintronic devices. Current-controlled magnetization switching can be driven by spin–orbit torques generated in an adjacent heavy-metal layer, but these structures are difficult to integrate with exchange bias switching and tunnelling magnetoresistance measurements. Here, we report the current-induced switching of the exchange bias field in a perpendicularly magnetized IrMn/CoFeB bilayer structure using a spin–orbit torque generated in the antiferromagnetic IrMn layer. By manipulating the current direction and amplitude, independent and repeatable switching of the magnetization and exchange bias field below the blocking temperature can be achieved. The critical current density for the exchange bias switching is found to be larger than that for CoFeB magnetization reversal. X-ray magnetic circular dichroism, polarized neutron reflectometry measurements and micromagnetic simulations show that a small net magnetization within the IrMn interface plays a crucial role in these phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic properties of the IrMn/CoFeB/MgO films and the Hall bars.
Fig. 2: Exchange bias and magnetization switching driven by current-induced SOT.
Fig. 3: Bidirectional switching of exchange bias field depending on SOT current polarity.
Fig. 4: XMCD and PNR during switching.
Fig. 5: Micromagnetic simulation results of exchange bias and its manipulation by SOT.
Fig. 6: Temperature and thickness dependence of magnetization and exchange bias switching.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    MathSciNet  Google Scholar 

  2. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Google Scholar 

  3. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–591 (2016).

    Google Scholar 

  4. Lau, Y. C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758–762 (2016).

    Google Scholar 

  5. Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Google Scholar 

  6. Lin, P. H. et al. Manipulating exchange bias by spin–orbit torque. Nat. Mater. 18, 335–341 (2019).

    Google Scholar 

  7. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Google Scholar 

  8. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Google Scholar 

  9. Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nat. Nanotechnol. 14, 131–136 (2019).

    Google Scholar 

  10. Razavi, S. A. et al. Joule heating effect on field-free magnetization switching by spin–orbit torque in exchange-biased systems. Phys. Rev. Appl. 7, 024023 (2017).

    Google Scholar 

  11. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Google Scholar 

  12. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Google Scholar 

  13. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Google Scholar 

  14. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Google Scholar 

  15. Baumgartner, M. et al. Dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Google Scholar 

  16. Zhang, W. & Krishnan, K. M. Epitaxial exchange-bias systems: from fundamentals to future spin–orbitronics. Mater. Sci. Eng. R 105, 1–20 (2016).

    Google Scholar 

  17. Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Google Scholar 

  18. Zhou, J. et al. Large spin–orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Sci. Adv. 5, eaau6696 (2019).

    Google Scholar 

  19. Zhang, W. et al. Giant facet-dependent spin–orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).

    Google Scholar 

  20. Wu, D. et al. Spin–orbit torques in perpendicularly magnetized Ir22Mn78/Co20Fe60B20/MgO multilayer. Appl. Phys. Lett. 109, 222401 (2016).

    Google Scholar 

  21. Ou, Y., Shi, S., Ralph, D. C. & Buhrman, R. A. Strong spin Hall effect in the antiferromagnet PtMn. Phys. Rev. B 93, 220405(R) (2016).

    Google Scholar 

  22. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Google Scholar 

  23. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Google Scholar 

  24. Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Google Scholar 

  25. Reichlová, H. et al. Current-induced torques in structures with ultrathin IrMn antiferromagnets. Phys. Rev. B 92, 165424 (2015).

    Google Scholar 

  26. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers. Nat. Mater. 3, 862 (2004).

    Google Scholar 

  27. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Google Scholar 

  28. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Google Scholar 

  29. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240 (2013).

    Google Scholar 

  30. Khvalkovskiy, A. V. et al. Matching domain-wall configuration and spin–orbit torques for efficient domain-wall motion. Phys. Rev. B 87, 020402 (2013).

    Google Scholar 

  31. Noguésa, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    Google Scholar 

  32. Stamps, R. L. Mechanisms for exchange bias. J. Phys. D: Appl. Phys. 33, 247268 (2000).

    Google Scholar 

  33. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 105, 3 (1957).

    Google Scholar 

  34. Ohldag, H. et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 91, 1 (2003).

    Google Scholar 

  35. Fitzsimmons, M. R. et al. Pinned magnetization in the antiferromagnet and ferromagnet of an exchange bias system. Phys. Rev. B 75, 214412 (2007).

    Google Scholar 

  36. Dubowika, J. & Goscianska, I. Micromagnetic approach to exchange bias. Acta Phys. Pol. A 127, 147–152 (2015).

    Google Scholar 

  37. Maranville, B., Ratcliff, W. & Kienzle, P. reductus: a stateless Python data reduction service with a browser front end. J. Appl. Crystallogr. 51, 1500–1506 (2018).

    Google Scholar 

  38. Kirby, B. J. et al. Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials. Curr. Opin. Colloid Interface Sci. 17, 44–53 (2012).

    Google Scholar 

  39. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Google Scholar 

  40. Clercq, J. D., Vansteenkiste, A., Abes, M., Temst, K. & Waeyenberge, B. V. Modelling exchange bias with MuMax3. J. Phys. D: Appl. Phys. 49, 435001 (2016).

    Google Scholar 

  41. Leighton, C., Nogués, J., Åkerman, B. J. J. & Schuller, I. K. Coercivity enhancement in exchange biased system driven by interfacial magnetic frustration. Phys. Rev. Lett. 84, 3466–3469 (2000).

    Google Scholar 

  42. Grady, K., Outon, L. E. F. & Fernandez, G. V. A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883–899 (2010).

    Google Scholar 

  43. Aley, N. P. et al. Texture effects in IrMn/CoFe exchange bias systems. IEEE Trans. Magn. 44, 2820–2823 (2008).

    Google Scholar 

  44. Rajua, M., Chaudhary, S. & Pandya, D. K. Magnetic annealing of the ion-beam sputtered IrMn/CoFeB bilayers—positive exchange bias and coercivity behavior. Eur. Phys. J. B 86, 491 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grant nos. 61627813, 61571023), the International Collaboration Project B16001, the National Key Technology Program of China 2017ZX01032101 and the Beihang Hefei Innovation Research Institute Project BHKX-19-02 for their financial support of this work. This research used resources of the Advanced Light Source, a DOE Office of Science User Facility, under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. initialized, conceived and supervised the project. S.P. fabricated the devices. S.P., W.L., J.L., W.C. and D.X. performed the measurements. D.Z. performed the micromagnetic simulations. H.W. deposited the thin films under the supervision of K.L.W. A.J.G., D.A.G. and P.S. performed and analysed the X-ray spectroscopy and the neutron reflectometry. S.P., D.Z., A.J.G. and W.Z. wrote the manuscript. All authors discussed the results and implications.

Corresponding author

Correspondence to Weisheng Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, Figs. 1–13 and refs. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Zhu, D., Li, W. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat Electron 3, 757–764 (2020). https://doi.org/10.1038/s41928-020-00504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-020-00504-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing