Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips

Abstract

Metasurfaces, which consist of arrays of subwavelength scatterers, can be used to precisely control incident electromagnetic fields, but are typically static once fabricated. A dynamically programmable array of terahertz meta-elements, in which each element can be individually reconfigured to allow controlled wavefront shaping, could be of value in terahertz applications such as wireless communication, sensing and imaging. Here, we show that large-scale programmable metasurfaces can be created using arrays of complementary metal–oxide–semiconductor (CMOS)-based chip tiles. We developed an aperture with a 2 × 2 array of tiled chips consisting of 576 meta-elements, each individually addressable and digitally programmable with 8 bits of control at GHz speed, and fabricated in a 65 nm industry-standard CMOS process. The active-circuit-coupled terahertz meta-element structure can be reconfigured, providing digitally programmable metasurfaces with amplitude and phase control, around 25 dB of amplitude modulation depth, dynamic beamforming across ±30°, multibeam formation and programmable holographic projections at 0.3 THz.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dynamically programmable and scalable terahertz metasurface with tiled silicon chips.
Fig. 2: Metasurface unit chip tile and the active metasurface structure and operation.
Fig. 3: Simulated and measured metasurface response.
Fig. 4: Programmable terahertz beamforming.
Fig. 5: Programmable holographic projections.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The source codes for MATLAB are available from the corresponding author upon request.

References

  1. 1.

    Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).

    Google Scholar 

  2. 2.

    Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Google Scholar 

  3. 3.

    Al Hadi, R. et al. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid-State Circuits 47, 2999–3012 (2012).

    Google Scholar 

  4. 4.

    Sengupta, K. Integrated circuits for terahertz communication beyond 100 GHz: are we there yet? In 2019 IEEE International Conference on Communications Workshops (ICC Workshops) 1–6 (IEEE, 2019).

  5. 5.

    Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

    Google Scholar 

  6. 6.

    Sengupta, K. & Hajimiri, A. A 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid-State Circuits 47, 3013–3031 (2012).

    Google Scholar 

  7. 7.

    Ojefors, E., Pfeiffer, U. R., Lisauskas, A. & Roskos, H. G. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE J. Solid-State Circuits 44, 1968–1976 (2009).

    Google Scholar 

  8. 8.

    Saeidi, H. et al. A 4 × 4 distributed multilayer oscillator network for harmonic injection and THz beamforming with 14 dBm EIRP at 416 GHz in a lensless 65 nm CMOS IC. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 256–258 (IEEE, 2020).

  9. 9.

    Wu, X. & Sengupta, K. On-chip THz spectroscope exploiting electromagnetic scattering with multi-port antenna. IEEE J. Solid-State Circuits 51, 3049–3062 (2016).

    Google Scholar 

  10. 10.

    Venkatesh, S. et al. Interferometric direction finding with a metamaterial detector. Appl. Phys. Lett. 103, 254103 (2013).

    Google Scholar 

  11. 11.

    Smith, T. et al. A hybrid THz imaging system with a 100-pixel CMOS imager and a 3.25–3.50 THz quantum cascade laser frequency comb. In ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC) 151–154 (IEEE, 2019).

  12. 12.

    Sengupta, K., Seo, D., Yang, L. & Hajimiri, A. Silicon integrated 280 GHz imaging chipset with 4 × 4 SiGe receiver array and CMOS source. IEEE Trans. Terahertz Sci. Technol. 5, 427–437 (2015).

    Google Scholar 

  13. 13.

    Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).

  14. 14.

    Jain, R., Hillger, P., Grzyb, J. & Pfeiffer, U. R. A 0.42 THz 9.2 dBm 64-pixel source-array SoC with spatial modulation diversity for computational terahertz imaging. In 2020 IEEE International Solid-State Circuits Conference (ISSCC) 440–442 (IEEE, 2020).

  15. 15.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Google Scholar 

  16. 16.

    Zhang, L., Mei, S., Huang, K. & Qiu, C.-W. Advances in full control of electromagnetic waves with metasurfaces. Adv. Opt. Mater. 4, 818–833 (2016).

    Google Scholar 

  17. 17.

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

    Google Scholar 

  18. 18.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Google Scholar 

  19. 19.

    Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

    Google Scholar 

  20. 20.

    Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Google Scholar 

  21. 21.

    Genevet, P., Lin, J., Kats, M. A. & Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 3, 1278 (2012).

    Google Scholar 

  22. 22.

    Pors, A., Nielsen, M. G., Eriksen, R. L. & Bozhevolnyi, S. I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

    Google Scholar 

  23. 23.

    Wan, X., Jiang, W. X., Ma, H. F. & Cui, T. J. A broadband transformation-optics metasurface lens. Appl. Phys. Lett. 104, 151601 (2014).

    Google Scholar 

  24. 24.

    Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Google Scholar 

  25. 25.

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    Google Scholar 

  26. 26.

    Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

    Google Scholar 

  27. 27.

    Walther, B. et al. Spatial and spectral light shaping with metamaterials. Adv. Mater. 24, 6300–6304 (2012).

    Google Scholar 

  28. 28.

    Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Google Scholar 

  29. 29.

    Xu, H.-X. et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep. 6, 38255 (2016).

    Google Scholar 

  30. 30.

    Huang, C. et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 7, 42302 (2017).

    Google Scholar 

  31. 31.

    Liu, X. & Padilla, W. J. Dynamic manipulation of infrared radiation with MEMS metamaterials. Adv. Opt. Mater. 1, 559–562 (2013).

    Google Scholar 

  32. 32.

    He, S., Yang, H., Jiang, Y., Deng, W. & Zhu, W. Recent advances in MEMS metasurfaces and their applications on tunable lens. Micromachines 10, 505 (2019).

    Google Scholar 

  33. 33.

    Zhao, X. et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5, 303–310 (2018).

    Google Scholar 

  34. 34.

    Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).

    Google Scholar 

  35. 35.

    Sensale-Rodriguez, B. et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012).

    Google Scholar 

  36. 36.

    Arezoomandan, S., Quispe, H. O. C., Ramey, N., Nieves, C. A. & Sensale-Rodriguez, B. Graphene-based reconfigurable terahertz plasmonics and metamaterials. Carbon 112, 177–184 (2017).

    Google Scholar 

  37. 37.

    Zheng, W., Fan, F., Chen, M., Chen, S. & Chang, S.-J. Optically pumped terahertz wave modulation in MoS2–Si heterostructure metasurface. AIP Adv. 6, 075105 (2016).

    Google Scholar 

  38. 38.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Google Scholar 

  39. 39.

    Hashemi, M. R. M., Yang, S.-H., Wang, T., Sepúlveda, N. & Jarrahi, M. Electronically-controlled beam-steering through vanadium dioxide metasurfaces. Sci. Rep. 6, 35439 (2016).

    Google Scholar 

  40. 40.

    Kim, J. et al. Controlling the polarization state of light with plasmonic metal oxide metasurface. ACS Nano 10, 9326–9333 (2016).

    Google Scholar 

  41. 41.

    Chanana, A. et al. Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites. Nat. Commun. 8, 1328 (2017).

    Google Scholar 

  42. 42.

    Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Google Scholar 

  43. 43.

    Wu, X. & Sengupta, K. Dynamic waveform shaping with picosecond time widths. IEEE J. Solid-State Circuits 52, 389–405 (2016).

    Google Scholar 

  44. 44.

    Sengupta, K. & Hajimiri, A. Mutual synchronization for power generation and beam-steering in CMOS with on-chip sense antennas near 200 GHz. IEEE Trans. Microw. Theory Tech. 63, 2867–2876 (2015).

    Google Scholar 

  45. 45.

    Sengupta, K. & Hajimiri, A. Designing optimal surface currents for efficient on-chip mm-wave radiators with active circuitry. IEEE Trans. Microw. Theory Tech. 64, 1976–1988 (2016).

    Google Scholar 

  46. 46.

    Liu, L. et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater. 26, 5031–5036 (2014).

    Google Scholar 

  47. 47.

    Zhang, X. et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv. Mater. 25, 4567–4572 (2013).

    Google Scholar 

  48. 48.

    Novotny, L. & Hecht, B. Propagation and Focusing of Optical Fields 2nd edn, 45–85 (Cambridge Univ. Press, 2012).

  49. 49.

    Venkatesh, S., Viswanathan, N. & Schurig, D. W-band sparse synthetic aperture for computational imaging. Opt. Express 24, 8317–8331 (2016).

    Google Scholar 

  50. 50.

    Landy, N. & Smith, D. R. Two-dimensional metamaterial device design in the discrete dipole approximation. J. Appl. Phys. 116, 044906 (2014).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Young Investigator Program from the Office of Naval Research under grant number N00014-17-1-2494, the Multi-University Research Initiative (MURI) from the Air Force Office of Scientific Research under grant number FA9550-16-1-0566, and the Defense University Research Instrumentation Program grants (N00014-19-1-2525) from the Office of Naval Research and Army Research Office (AWD1006129). We also acknowledge J. Suarez, US Army CCDC C5ISR, for support and technical discussions.

Author information

Affiliations

Authors

Contributions

S.V., X.L. and K.S. conceived the experiments and design. S.V. performed the unit-cell electromagnetic design simulations. X.L. performed the circuit simulations, layout design and chip assembly. H.S. performed field-programmable gate array programming and helped during experiments. S.V. conducted the measurements and analysed results. K.S. supervised the experiments. S.V. and K.S. wrote the manuscript and all authors reviewed it.

Corresponding author

Correspondence to Suresh Venkatesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, S., Lu, X., Saeidi, H. et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat Electron 3, 785–793 (2020). https://doi.org/10.1038/s41928-020-00497-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing