Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A transverse tunnelling field-effect transistor made from a van der Waals heterostructure


Semiconductor devices that rely on quantum tunnelling could be of use in logic, memory and radiofrequency applications. Tunnel devices that exhibit negative differential resistance typically follow an operating principle in which the tunnelling current contributes directly to the drive current. Here, we report a tunnelling field-effect transistor made from a black phosphorus/Al2O3/black phosphorus van der Waals heterostructure in which the tunnelling current is in the transverse direction with respect to the drive current. Through an electrostatic effect, this tunnelling current can induce a drastic change in the output current, leading to a tunable negative differential resistance with a peak-to-valley ratio of more than 100 at room temperature. Our device also exhibits abrupt switching, with a body factor (the relative change in gate voltage with respect to that of the surface potential) that is one-tenth of the Boltzmann limit for conventional transistors across a wide temperature range.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device structure and characterization.
Fig. 2: Four-terminal tunnel device with NDR.
Fig. 3: Tunable NDR behaviour.
Fig. 4: Abrupt switching in TT-FETs.
Fig. 5: Abrupt switching at various temperatures.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Maekawa, T. et al. Frequency increase in terahertz oscillation of resonant tunnelling diode up to 1.55 THz by reduced slot-antenna length. Electron. Lett. 50, 1214–1216 (2014).

    Article  Google Scholar 

  2. 2.

    Feiginov, M. et al. Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 99, 233506 (2011).

    Article  Google Scholar 

  3. 3.

    Koyama, Y. et al. Oscillations up to 1.40 THz from resonant-tunneling-diode-based oscillators with integrated patch antennas. Appl. Phys. Express 6, 064102 (2013).

    Article  Google Scholar 

  4. 4.

    Jin, N. et al. Tri-state logic using vertically integrated Si-SiGe resonant interband tunneling diodes with double NDR. IEEE Electron Device Lett. 25, 646–648 (2004).

    Article  Google Scholar 

  5. 5.

    Gan, K.-J., Tsai, C.-S., Chen, Y.-W. & Yeh, W.-K. Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid-State Electron. 54, 1637–1640 (2010).

    Article  Google Scholar 

  6. 6.

    Berezowski, K. S. & Vrudhula, S. B. Multiple-valued logic circuits design using negative differential resistance devices. In 37th Int. Symposium on Multiple-Valued Logic (ISMVL'07) (IEEE, 2007).

  7. 7.

    Gong, C., Zhang, H., Wang, W. & Colombo, L. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013).

    Article  Google Scholar 

  8. 8.

    Shewchun, J. & Temple, V. Theoretical tunneling current characteristics of the SIS (semiconductor–insulator–semiconductor) diode. J. Appl. Phys. 43, 5051–5061 (1972).

    Article  Google Scholar 

  9. 9.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  Google Scholar 

  10. 10.

    Huang, M. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017).

    Article  Google Scholar 

  11. 11.

    Mou, X., Register, L. F., MacDonald, A. H. & Banerjee, S. K. Bilayer pseudospin junction transistor (BiSJT) for ‘beyond-CMOS’ logic. IEEE Trans. Electron Devices 64, 4759–4762 (2017).

    Article  Google Scholar 

  12. 12.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  13. 13.

    Yan, R. et al. GaN/NbN epitaxial semiconductor/superconductor heterostructures. Nature 555, 183–189 (2018).

    Article  Google Scholar 

  14. 14.

    Zhang, C. et al. Systematic study of electronic structure and band alignment of monolayer transition metal dichalcogenides in van der Waals heterostructures. 2D Mater. 4, 015026 (2017).

    Article  Google Scholar 

  15. 15.

    Lin, Y.-C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 7311 (2015).

    Article  Google Scholar 

  16. 16.

    Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  Google Scholar 

  17. 17.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article  Google Scholar 

  18. 18.

    Fallahazad, B. et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15, 428–433 (2015).

    Article  Google Scholar 

  19. 19.

    Chen, J., Reed, M., Rawlett, A. & Tour, J. Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  Google Scholar 

  20. 20.

    Perrin, M. L. et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 9, 830–834 (2014).

    Article  Google Scholar 

  21. 21.

    Bhattacharyya, S. et al. Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures. Nat. Mater. 5, 19–22 (2006).

    Article  Google Scholar 

  22. 22.

    Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

    Article  Google Scholar 

  23. 23.

    Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).

    Article  Google Scholar 

  24. 24.

    Burg, G. W. et al. Coherent interlayer tunneling and negative differential resistance with high current density in double bilayer graphene–WSe2 heterostructures. Nano Lett. 17, 3919–3925 (2017).

    Article  Google Scholar 

  25. 25.

    Shim, J. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016).

    Article  Google Scholar 

  26. 26.

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015).

    Article  Google Scholar 

  27. 27.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  Google Scholar 

  28. 28.

    Li, T. et al. High field transport of high performance black phosphorus transistors. Appl. Phys. Lett. 110, 372 (2017).

    Google Scholar 

  29. 29.

    Xiong, X. et al. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electron Device Lett. 39, 127–130 (2017).

    Article  Google Scholar 

  30. 30.

    Castellanos-Gomez, A. Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6, 4280–4291 (2015).

    Article  Google Scholar 

  31. 31.

    Cai, Y., Zhang, G. & Zhang, Y.-W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014).

    Article  Google Scholar 

  32. 32.

    Asahina, H. & Morita, A. Band structure and optical properties of black phosphorus. J. Phys. C 17, 1839–1852 (2000).

    Article  Google Scholar 

  33. 33.

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  Google Scholar 

  34. 34.

    Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior and scaling. ACS Nano 8, 10035–10042 (2014).

    Article  Google Scholar 

  35. 35.

    Li, X. et al. Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale 8, 3572–3578 (2016).

    Article  Google Scholar 

  36. 36.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

  37. 37.

    Kastalsky, A. & Luryi, S. Novel real-space hot-electron transfer devices. IEEE Electron Device Lett. 4, 334–336 (1983).

    Article  Google Scholar 

  38. 38.

    Kastalsky, A. et al. A field-effect transistor with a negative differential resistance. IEEE Electron Device Lett. 5, 57–60 (1984).

    Article  Google Scholar 

  39. 39.

    Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

    Article  Google Scholar 

  40. 40.

    Ota, H. et al. Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration. In IEEE Int. Electron Devices Meeting 318–321 (IEEE, 2016).

  41. 41.

    Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 13, 24–28 (2018).

    Article  Google Scholar 

  42. 42.

    Ganjipour, B., Wallentin, J., Borgström, M. T., Samuelson, L. & Thelander, C. Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. ACS Nano 6, 3109–3113 (2012).

    Article  Google Scholar 

  43. 43.

    Dewey, G. et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In IEEE Int. Electron Devices Meeting 785–788 (IEEE, 2011).

  44. 44.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  Google Scholar 

  45. 45.

    Then, H. W. et al. Experimental observation and physics of ‘negative’ capacitance and steeper than 40 mV/decade subthreshold swing in Al0.83In0.17N/AlN/GaN MOS-HEMT on SiC substrate. In IEEE Int. Electron Devices Meeting 691–694 (IEEE, 2013).

Download references


This work was supported by the National Natural Science Foundation of China (grants 91964106 and 61874162), the 111 Project (B18001) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB30000000). We thank the staff at the Center of Micro-fabrication and Characterization of Wuhan National Laboratory for Optoelectronics and Huazhong University of Science and Technology Analytical and Testing Center for support with electron-beam lithography, electron-beam evaporation and transmission electron microscopy.

Author information




Y.W. proposed and supervised the project. Y.W., X.X. and M.H. designed the experiment. X.X. and M.H. performed device fabrication and characterization. B.H. performed the simulations. X.L., F.L., S.L., M.T., T.L. and J.S. assisted with device fabrication and discussions. X.X., M.H. and Y.W. analysed the data and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yanqing Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Note 1 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Huang, M., Hu, B. et al. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat Electron 3, 106–112 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing