Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hybrid organic–metal oxide multilayer channel transistors with high operational stability

Abstract

Metal oxide thin-film transistors are increasingly used in the driving backplanes of organic light-emitting diode displays. Commercial devices currently rely on metal oxides processed via physical vapour deposition methods, but the use of solution-based processes could provide a simpler, higher-throughput approach that would be more cost effective. However, creating oxide transistors with high carrier mobility and bias-stable operation using such processes has proved challenging. Here we show that transistors with high electron mobility (50 cm2 V−1 s−1) and operational stability can be fabricated from solution-processed multilayer channels composed of ultrathin layers of indium oxide, zinc oxide nanoparticles, ozone-treated polystyrene and compact zinc oxide. Insertion of the ozone-treated polystyrene interlayer passivates electron traps in the channel and reduces bias-induced instability during continuous transistor operation over a period of 24 h and under a high electric-field flux density (2.1 × 10−6 C cm−2). Furthermore, incorporation of the pre-synthesized aluminium-doped zinc oxide nanoparticles enables controlled n-type doping of the hybrid channels, providing additional control over the operating characteristics of the transistors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface topography and current mapping of ZnO-NP and ZnO-NPs/PS layers.
Fig. 2: Current–voltage characteristics of oxide transistors and EELS analysis of oxide nanocomposites.
Fig. 3: Bias-stress measurement and analysis of DNC-based transistors.
Fig. 4: Threshold voltage and trap state distribution for transistors before and after bias stress.
Fig. 5: 3D scatter plot of transistor bias-stress data.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tang, J. et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 1, 191–196 (2018).

    Article  Google Scholar 

  2. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  Google Scholar 

  3. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  Google Scholar 

  4. Faber, H. et al. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 3, e1602640 (2017).

    Article  Google Scholar 

  5. Kim, G. H. et al. Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517, 4007–4010 (2009).

    Article  Google Scholar 

  6. Takata, R. et al. Scalability and homogeneity of slot die-coated metal oxide semiconductor for TFTs. J. Soc. Inf. Disp. 24, 381–385 (2016).

    Article  Google Scholar 

  7. Solution based OLEDs. OLED-info https://www.oled-info.com/taxonomy/term/251/blank.htm (2019).

  8. Kim, M. G., Kanatzidis, M. G., Facchetti, A. & Marks, T. J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382–388 (2011).

    Article  Google Scholar 

  9. Hosono, H. Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515, 6000–6014 (2007).

    Article  Google Scholar 

  10. Thomas, S. R., Pattanasattayavong, P. & Anthopoulos, T. D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem. Soc. Rev. 42, 6910–6923 (2013).

    Article  Google Scholar 

  11. Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).

    Article  Google Scholar 

  12. Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012).

    Article  Google Scholar 

  13. Adamopoulos, G. et al. Spray-deposited Li-doped ZnO transistors with electron mobility exceeding 50 cm2/Vs. Adv. Mater. 22, 4764–4769 (2010).

    Article  Google Scholar 

  14. Yu, X. et al. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors. Proc. Natl Acad. Sci. USA 112, 3217–3222 (2015).

    Article  Google Scholar 

  15. Wang, B. H. et al. Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis. Adv. Electron. Mater. 2, 1500427 (2016).

    Article  Google Scholar 

  16. Kamiya, T. & Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2, 15–22 (2010).

    Article  Google Scholar 

  17. Nomura, K., Kamiya, T., Hirano, M. & Hosono, H. Origins of threshold voltage shifts in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 95, 013502 (2009).

    Article  Google Scholar 

  18. Nomura, K., Kamiya, T. & Hosono, H. Highly stable amorphous In-Ga-Zn-O thin-film transistors produced by eliminating deep subgap defects. Appl. Phys. Lett. 99, 053505 (2011).

    Article  Google Scholar 

  19. Sun, B. & Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408–2413 (2005).

    Article  Google Scholar 

  20. Lin, Y. H., Faber, H., Rossbauer, S. & Anthopoulos, T. D. Solution-processed ZnO nanoparticle-based transistors via a room-temperature photochemical conversion process. Appl. Phys. Lett. 102, 193516 (2013).

    Article  Google Scholar 

  21. Sabri, M. M. et al. Hydroxyl radical-assisted decomposition and oxidation in solution-processed indium oxide thin-film transistors. J. Mater. Chem. C 3, 7499–7505 (2015).

    Article  Google Scholar 

  22. Faber, H. et al. Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors. ACS Appl. Mater. Interfaces 4, 1693–1696 (2012).

    Article  Google Scholar 

  23. Okamura, K., Mechau, N., Nikolova, D. & Hahn, H. Influence of interface roughness on the performance of nanoparticulate zinc oxide field-effect transistors. Appl. Phys. Lett. 93, 083105 (2008).

    Article  Google Scholar 

  24. Bubel, S. & Schmechel, R. Mechanical layer compaction for dispersion processed nanoparticulate zinc oxide thin film transistors. Microelectron. Eng. 96, 36–39 (2012).

    Article  Google Scholar 

  25. Li, F. M. et al. Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron Dev. 55, 3001–3011 (2008).

    Article  Google Scholar 

  26. Khim, D. et al. Modulation-doped In2O3/ZnO heterojunction transistors processed from solution. Adv. Mater. 29, 1605837 (2017).

    Article  Google Scholar 

  27. Lin, Y.-H. et al. High electron mobility thin-film transistors based on solution-processed semiconducting metal oxide heterojunctions and quasi-superlattices. Adv. Sci. 2, 1500058 (2015).

    Article  Google Scholar 

  28. Venkatesan, S., Ngo, E., Khatiwada, D., Zhang, C. & Qiao, Q. Q. Enhanced lifetime of polymer solar cells by surface passivation of metal oxide buffer layers. ACS Appl. Mater. Interfaces 7, 16093–16100 (2015).

    Article  Google Scholar 

  29. Zhong, P., Ma, X. & Xi, H. Passivating ZnO surface states by C60 pyrrolidine tris-acid for hybrid solar cells based on poly(3-hexylthiophene)/ZnO nanorod arrays. Polymers 10, 4 (2018).

    Article  Google Scholar 

  30. Olziersky, A. et al. Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors. J. Appl. Phys. 108, 064505 (2010).

    Article  Google Scholar 

  31. Panagiotopoulos, N. T. et al. Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting. ACS Nano 6, 10475–10485 (2012).

    Article  Google Scholar 

  32. Davidson, M. R., Mitchell, S. A. & Bradley, R. H. Surface studies of low molecular weight photolysis products from UV-ozone oxidised polystyrene. Surf. Sci. 581, 169–177 (2005).

    Article  Google Scholar 

  33. Klein, R. J., Fischer, D. A. & Lenhart, J. L. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle. Langmuir 24, 8187–8197 (2008).

    Article  Google Scholar 

  34. Huang, W., Fan, H. D., Zhuang, X. M. & Yu, J. S. Effect of UV/ozone treatment on polystyrene dielectric and its application on organic field-effect transistors. Nanoscale Res. Lett. 9, 479 (2014).

    Article  Google Scholar 

  35. Baeg, K. J., Noh, Y. Y., Ghim, J., Lim, B. & Kim, D. Y. Polarity effects of polymer gate electrets on non-volatile organic field-effect transistor memory. Adv. Funct. Mater. 18, 3678–3685 (2008).

    Article  Google Scholar 

  36. Shih, C. C. et al. High performance transparent transistor memory devices using nano-floating gate of polymer/ZnO nanocomposites. Sci. Rep. 6, 20129 (2016).

    Article  Google Scholar 

  37. Chen, Y. et al. Polymer doping enables a two-dimensional electron gas for high-performance homojunction oxide thin-film transistors. Adv. Mater. 31, 1805082 (2019).

    Article  Google Scholar 

  38. Zschieschang, U., Weitz, R. T., Kern, K. & Klauk, H. Bias stress effect in low-voltage organic thin-film transistors. Appl. Phys. A 95, 139–145 (2009).

    Article  Google Scholar 

  39. Sung, S.-Y. et al. Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Appl. Phys. Lett. 96, 102107 (2010).

    Article  Google Scholar 

  40. Liu, P.-T., Chou, Y.-T. & Teng, L.-F. Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Appl. Phys. Lett. 95, 233504 (2009).

    Article  Google Scholar 

  41. Jeong, J. K., Yang, H. W., Jeong, J. H., Mo, Y.-G. & Kim, H. D. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93, 123508 (2008).

    Article  Google Scholar 

  42. Chen, Y.-C. et al. Bias-induced oxygen adsorption in zinc tin oxide thin film transistors under dynamic stress. Appl. Phys. Lett. 96, 262104 (2010).

    Article  Google Scholar 

  43. Mottram, A. D. et al. Quasi two-dimensional dye-sensitized In2O3 phototransistors for ultrahigh responsivity and photosensitivity photodetector applications. ACS Appl. Mater. Interfaces 8, 4894–4902 (2016).

    Article  Google Scholar 

  44. Grünewald, M., Thomas, P. & Würtz, D. A simple scheme for evaluating field effect data. Phys. Status Solidi B 100, K139–K143 (1980).

    Article  Google Scholar 

  45. Bubel, S. & Chabinyc, M. L. Model for determination of mid-gap states in amorphous metal oxides from thin film transistors. J. Appl. Phys. 113, 234507 (2013).

    Article  Google Scholar 

  46. Cho, E. N., Kang, J. H., Kim, C. E., Moon, P. & Yun, I. Analysis of bias stress instability in amorphous InGaZnO thin-film transistors. IEEE Trans. Device Mater. Rel. 11, 112–117 (2011).

    Article  Google Scholar 

  47. Wolff, C. M. et al. Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017).

    Article  Google Scholar 

  48. Qi, W., Qingfeng, D., Tao, L., Alexei, G. & Jinsong, H. Thin insulating tunneling contacts for efficient and water‐resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    Article  Google Scholar 

  49. Ton-That, C., Campbell, P. A. & Bradley, R. H. Frictional force microscopy of oxidized polystyrene surfaces measured using chemically modified probe tips. Langmuir 16, 5054–5058 (2000).

    Article  Google Scholar 

  50. Murakami, T. N. et al. Surface modification of polystyrene and poly(methyl methacrylate) by active oxygen treatment. Colloids Surf. B 29, 171–179 (2003).

    Article  Google Scholar 

  51. Wöll, C. The chemistry and physics of zinc oxide surfaces. Prog. Surf. Sci. 82, 55–120 (2007).

    Article  Google Scholar 

  52. Lin, Y.-H. et al. Al-doped ZnO transistors processed from solution at 120 °C. Adv. Electron. Mater. 2, 1600070 (2016).

    Article  Google Scholar 

  53. Chen, M. et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000).

    Article  Google Scholar 

  54. Jeong, Y. et al. Bias-stress-stable solution-processed oxide thin film transistors. ACS Appl. Mater. Interfaces 2, 611–615 (2010).

    Article  Google Scholar 

  55. Beamson, G. & Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, 1992).

  56. Bhattacharya, P., Fornari, R. & Kamimura, H. Comprehensive Semiconductor Science and Technology (Elsevier Science, 2011).

  57. Wu, J. et al. Effect of UV-ozone treatment on the performance of ZnO TFTs fabricated by RF sputtering deposition technique. IEEE Trans. Electron Dev. 61, 1403–1409 (2014).

    Article  Google Scholar 

  58. Li, D. et al. Effect of UV-ozone process on the ZnO interlayer in the inverted organic solar cells. RSC Adv. 7, 6040–6045 (2017).

    Article  Google Scholar 

  59. Kato, Y., Jung, M.-C., Lee, M. V. & Qi, Y. Electrical and optical properties of transparent flexible electrodes: effects of UV ozone and oxygen plasma treatments. Org. Electron. 15, 721–728 (2014).

    Article  Google Scholar 

  60. Labram, J. G., Lin, Y.-H. & Anthopoulos, T. D. Exploring two-dimensional transport phenomena in metal oxide heterointerfaces for next-generation, high-performance, thin-film transistor technologies. Small 11, 5472–5482 (2015).

    Article  Google Scholar 

  61. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  62. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  63. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  Google Scholar 

  64. Jepson, O. & Anderson, O. K. The electronic structure of h.c.p. ytterbium. Solid State Commun. 9, 1763–1767 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

Y.-H.L., H.F., D.K. and T.D.A. are grateful to the European Research Council (ERC) AMPRO project no. 280221 for financial support. N.A.H. and T.D.A. are grateful to the European Research Council (ERC) Marie Sklodowska-Curie grant no. 661127 for financial support. The authors thank King Abdullah University of Science and Technology (KAUST) for financial support and for facilitating access to the Core Laboratories. L.T. acknowledges support for the computational time granted from GRNET in the National HPC facility—ARIS—under project STEM-2.

Author information

Authors and Affiliations

Authors

Contributions

T.D.A. and Y.-H.L. conceived the project. T.D.A. guided and supervised the project. Y.-H.L. and W.L. fabricated the devices and thin-film samples and performed electrical measurements. Y.-H.L. and W.L. analysed all the device data. Y.-H.L. and W.L. carried out the c-AFM, AFM and KP measurements and analysed the data. N.A.H. performed trap state analysis. H.F. and D.K. assisted with bias-stress measurements. Q.Z. and X.Z. carried out TEM characterization. N.P. and P.A.P. carried out XPS characterization and analysis. L.T. performed DFT analysis. D.D.C.B. and W.H. provided suggestions for material characterization. Y.-H.L. and T.D.A. wrote the first draft of the manuscript. All authors discussed the results and contributed to the writing of the paper.

Corresponding authors

Correspondence to Yen-Hung Lin or Thomas D. Anthopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH., Li, W., Faber, H. et al. Hybrid organic–metal oxide multilayer channel transistors with high operational stability. Nat Electron 2, 587–595 (2019). https://doi.org/10.1038/s41928-019-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-019-0342-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing