Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An ultrathin integrated nanoelectromechanical transducer based on hafnium zirconium oxide

Abstract

Nanomechanical resonators that can operate in the super high frequency (3–30 GHz) or the extremely high frequency (30–300 GHz) regime could be of use in the development of stable frequency references, wideband spectral processors and high-resolution resonant sensors. However, such operation requires the dimensions of the mechanical resonators to be reduced to tens of nanometres, and current devices typically rely on transducers, for which miniaturization and chip-scale integration are challenging. Here, we show that integrated nanoelectromechanical transducers can be created using 10-nm-thick ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2) films. The transducers are integrated on silicon and aluminium nitride membranes, and can yield resonators with frequencies from 340 kHz to 13 GHz and frequency–quality-factor products of up to 3.97 × 1012. Using electrical and optical probes, we show that the electromechanical transduction behaviour of the Hf0.5Zr0.5O2 film is based on the electrostrictive effect, and highlight the role of nonlinear electromechanical scattering in the operation of the resonator.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Atomically engineered polycrystalline Hf0.5Zr0.5O2 with predominant orthorhombic crystal phase.
Fig. 2: A 339 kHz Hf0.5Zr0.5O2-transduced Si membrane resonator.
Fig. 3: Hf0.5Zr0.5O2-transduced AlN-on-Si lateral- and thickness-extensional mode resonators.
Fig. 4: Time- and frequency-domain response of Hf0.5Zr0.5O2-transduced Si resonator for different ferroelectric polarization scenarios.
Fig. 5: The output power spectrum around the fundamental, second and third harmonics for the Hf0.5Zr0.5O2-transduced AlN-on-Si resonator operating in lateral-extensional mode, for various input radio-frequency powers.
Fig. 6: Comparison of electromechanical and thermomechanical scattering using fundamental, second and third harmonics.

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supplementary Information. Extra data are available from the corresponding author on request.

References

  1. 1.

    LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  Google Scholar 

  2. 2.

    Jensen, K., Kim, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 3, 533 (2008).

    Article  Google Scholar 

  3. 3.

    Barson, M. S. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).

    Article  Google Scholar 

  4. 4.

    Ramezany, A. & Pourkamali, S. Ultrahigh frequency nanomechanical piezoresistive amplifiers for direct channel-selective receiver front-ends. Nano Lett. 18, 2551–2556 (2018).

    Article  Google Scholar 

  5. 5.

    Villanueva, L. G. et al. A nanoscale parametric feedback oscillator. Nano Lett. 11, 5054–5059 (2011).

    Article  Google Scholar 

  6. 6.

    Naing, T. L., Rocheleau, T. O., Ren, Z., Li, S. S. & Nguyen, C. T. C. High-Q UHF spoke-supported ring resonators. J. Microelectromech. Syst. 25, 11–29 (2016).

    Article  Google Scholar 

  7. 7.

    Pourkamali, S., Ho, G. K. & Ayazi, F. Low-impedance VHF and UHF capacitive silicon bulk acoustic wave resonators—part I: concept and fabrication. IEEE Trans. Electron Devices 54, 2017–2023 (2007).

    Article  Google Scholar 

  8. 8.

    Ruby, R. et al. Positioning FBAR technology in the frequency and timing domain. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 334–345 (2012).

    Article  Google Scholar 

  9. 9.

    Cassella, C. et al. Super high frequency aluminum nitride two-dimensional-mode resonators with k t 2 exceeding 4.9%. IEEE Microw. Wirel. Compon. Lett. 27, 105–107 (2017).

    Article  Google Scholar 

  10. 10.

    Iborra, E., Clement, M., Capilla, J., Olivares, J. & Felmetsger, V. Low-thickness high-quality aluminum nitride films for super high frequency solidly mounted resonators. Thin Solid Films 520, 3060–3063 (2012).

    Article  Google Scholar 

  11. 11.

    Sinha, N., et al. Ultra thin AlN piezoelectric nano-actuators. In TRANSDUCERS 2009—2009 International Solid-State Sensors, Actuators and Microsystems Conference 469–472 (IEEE, 2009).

  12. 12.

    Wang, Z. et al. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale 7, 877–884 (2015).

    Article  Google Scholar 

  13. 13.

    Lee, J., Wang, Z., He, K., Shan, J. & Feng, P. X. L. High frequency MoS2 nanomechanical resonators. ACS Nano 7, 6086–6091 (2013).

    Article  Google Scholar 

  14. 14.

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article  Google Scholar 

  15. 15.

    Chen, C. Y. et al. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).

    Article  Google Scholar 

  16. 16.

    van der Zande, A. M. et al. Large-scale arrays of single layer graphene resonators. Nano Lett. 10, 4869–4873 (2010).

    Article  Google Scholar 

  17. 17.

    Eichler, A. et al. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6, 339–342 (2011).

    Article  Google Scholar 

  18. 18.

    Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  Google Scholar 

  19. 19.

    Mulaosmanovic, H. et al. Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors. ACS Appl. Mater. Interfaces 9, 3792–3798 (2017).

    Article  Google Scholar 

  20. 20.

    Chernikova, A. et al. Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si. ACS Appl. Mater. Interfaces 8, 7232–7237 (2016).

    Article  Google Scholar 

  21. 21.

    Ghatge, M., Walters, G., Nishida, T., & Tabrizian, R. A nano-mechanical resonator with 10nm hafnium-zirconium oxide ferroelectric transducer. In 2018 IEEE International Electron Devices Meeting (IEDM) 4–6 (IEEE, 2019).

  22. 22.

    Böscke, T. S. et al. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).

    Article  Google Scholar 

  23. 23.

    Park, M. H. et al. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).

    Article  Google Scholar 

  24. 24.

    Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2‐based films. Adv. Mater. 27, 1811–1831 (2015).

    Article  Google Scholar 

  25. 25.

    Park, M. H. et al. Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1−xO2 films. Nano Energy 12, 131–140 (2015).

    Article  Google Scholar 

  26. 26.

    Materlik, R., Künneth, C. & Kersch, A. The origin of ferroelectricity in Hf1−xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015).

    Article  Google Scholar 

  27. 27.

    Schroeder, U. et al. Impact of different dopants on the switching properties of ferroelectric hafnium oxide. Jpn. J. Appl. Phys. 53, 08LE02 (2014).

    Article  Google Scholar 

  28. 28.

    Sundar, V. & Newnham, R. E. Electrostriction and polarization. Ferroelectrics 135, 431–446 (1992).

    Article  Google Scholar 

  29. 29.

    Gieseler, J., Novotny, L. & Quidant, R. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys. 9, 806 (2013).

    Article  Google Scholar 

  30. 30.

    Segovia-Fernandez, J. & Piazza, G. Thermal nonlinearities in contour mode AlN resonators. J. Microelectromech. Syst. 22, 976–985 (2013).

    Article  Google Scholar 

  31. 31.

    Ghatge, M., Karri, P., & Tabrizian, R. Power-insensitive silicon crystal-cut for amplitude-stable frequency synthesis. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) 76–79 (IEEE, 2017).

  32. 32.

    Polunin, P. M., Yang, Y., Dykman, M. I., Kenny, T. W. & Shaw, S. W. Characterization of MEMS resonator nonlinearities using the ringdown response. J. Microelectromech. Syst. 25, 297–303 (2016).

    Article  Google Scholar 

  33. 33.

    Rocas, E., Collado, C., Mateu, J., Campanella, H., & O’Callaghan, J. M. Third order intermodulation distortion in film bulk acoustic resonators at resonance and antiresonance. In 2008 IEEE MTT-S International Microwave Symposium Digest 1259–1262 (IEEE, 2008).

  34. 34.

    Matheny, M. H., Villanueva, L. G., Karabalin, R. B., Sader, J. E. & Roukes, M. L. Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13, 1622–1626 (2013).

    Article  Google Scholar 

  35. 35.

    Ghatge, M. & Tabrizian, R. Exploiting elastic anharmonicity in aluminum nitride matrix for phase-synchronous frequency reference generation. Appl. Phys. Lett. 112, 123503 (2018).

    Article  Google Scholar 

  36. 36.

    Zhu, J., Ru, C. Q. & Mioduchowski, A. High-order subharmonic parametric resonance of multiple nonlinearly coupled micromechanical nonlinear oscillators. Acta Mech. 212, 69–81 (2010).

    Article  Google Scholar 

  37. 37.

    Popa, B. I. & Cummer, S. A. Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat. Commun. 5, 3398 (2014).

    Article  Google Scholar 

  38. 38.

    Lepri, S. & Pikovsky, A. Nonreciprocal wave scattering on nonlinear string-coupled oscillators. Chaos 24, 043119 (2014).

    MathSciNet  Article  Google Scholar 

  39. 39.

    Ghatge, M., Walters, G., Nishida, T. & Tabrizian, R. A non-reciprocal filter using asymmetrically transduced micro-acoustic resonators. IEEE Electron Device Lett. 40, 800–803 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Nanoscale Research Facility at the University of Florida for the fabrication facilities and N. Rudawski for help with TEM. This work was supported in part by the NSF grants ECCS 1610387 and ECCS 1752206.

Author information

Affiliations

Authors

Contributions

M.G. designed, fabricated and measured the resonators. G.W. fabricated and characterized the Hf0.5Zr0.5O2 ferroelectric film. T.N. and R.T. supervised the project and provided guidance throughout the process. All authors participated in analysing the results and contributed to writing the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Roozbeh Tabrizian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–3, containing Supplementary Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghatge, M., Walters, G., Nishida, T. et al. An ultrathin integrated nanoelectromechanical transducer based on hafnium zirconium oxide. Nat Electron 2, 506–512 (2019). https://doi.org/10.1038/s41928-019-0305-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing