Abstract
The field of terahertz integrated technology has undergone significant development in the past ten years. This has included work on different substrate technologies such as III–V semiconductors and silicon, work on field-effect transistor devices and heterojunction bipolar devices, and work on both fully electronic and hybrid electronic–photonic systems. While approaches in electronic and photonics can often seem distinct, techniques have blended in the terahertz frequency range and many emerging systems can be classified as photonics-inspired or hybrid. Here, we review the development of terahertz integrated electronic and hybrid electronic–photonic systems, examining, in particular, advances that deliver important functionalities for applications in communication, sensing and imaging. Many of the advances in integrated systems have emerged, not from improvements in single devices, but rather from new architectures that are multifunctional and reconfigurable and break the trade-offs of classical approaches to electronic system design. We thus focus on these approaches to capture the diversity of techniques and methodologies in the field.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Near-field sensor array with 65-GHz CMOS oscillators can rapidly and comprehensively evaluate drug susceptibility of Mycobacterium
Scientific Reports Open Access 07 March 2023
-
Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision
Nature Communications Open Access 22 February 2023
-
Terahertz Beam Steering: from Fundamentals to Applications
Journal of Infrared, Millimeter, and Terahertz Waves Open Access 20 February 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Rubens, H. & Nichols, E. F. Heat rays of great wave length. Phys. Rev. 4, 314–323 (1897).
Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).
Siegel, P. H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).
Duling, I. & Zimdars, D. Terahertz imaging: revealing hidden defects. Nat. Photon. 3, 630–632 (2009).
Ferguson, B. & Zheng, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).
Song, H. J. & Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011).
Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).
Mittleman, D. M. Twenty years of terahertz imaging. Opt. Express 26, 9417–9431 (2018).
Mittleman, D. M. Terahertz science and technology. J. Appl. Phys. 122, 230901 (2017).
Hu, B. & Nuss, M. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995).
Woodward, R. M. et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853–3863 (2002).
Pickwell, E. & Wallace, V. P. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39, R301–R310 (2006).
Liu, H.-B. et al. Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007).
Bolivar, P. H. et al. Label-free probing of genes by time-domain terahertz sensing. Phys. Med. Biol. 47, 3815–3821 (2002).
Xie, L., Gao, W., Shu, J., Ying, Y. & Kono, J. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci. Rep. 5, 8671 (2015).
Cooper, K. B. et al. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 1, 169–182 (2011).
Stake, J., Malko, A., Bryllert, T. & Vukusic, J. Status and prospects of high-power heterostructure barrier varactor frequency multipliers. Proc. IEEE 105, 1008–1019 (2017).
Urteaga, M., Griffith, Z., Seo, M., Hacker, J. & Rodwell, M. J. W. InP HBT technologies for THz integrated circuits. Proc. IEEE 105, 1051–1067 (2017).
Chevalier, P. et al. Si/SiGe:C and InP/GaAsSb heterojunction bipolar transistors for THz applications. Proc. IEEE 105, 1035–1050 (2017).
Voinigescu, S. P. et al. Silicon millimeter-wave, terahertz, and high-speed fiber-optic device and benchmark circuit scaling through the 2030 ITRS horizon. Proc. IEEE 105, 1087–1104 (2017).
Schröter, M. et al. SiGe HBT technology: future trends and TCAD-based roadmap. Proc. IEEE 105, 1068–1086 (2017).
Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6, 630–634 (2011).
Tassin, P. et al. Graphene for terahertz applications. Science 341, 620–621 (2013).
Kazior, T. E. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20130105 (2014).
Song, H. J. Packages for terahertz electronics. Proc. IEEE 105, 1121–1138 (2017).
Chattopadhyay, G., Reck, T., Lee, C. & Jung-Kubiak, C. Micromachined packaging for terahertz systems. Proc. IEEE 105, 1139–1150 (2017).
Vijayraghavan, K. et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nat. Commun. 4, 2021 (2013).
Sirtori, C., Barbieri, S. & Colombelli, R. Wave engineering with THz quantum cascade lasers. Nat. Photon. 7, 691–701 (2013).
Wanke, M. C. et al. Monolithically integrated solid-state terahertz transceivers. Nat. Photon. 4, 565–569 (2010).
Hammar, A. et al. Terahertz direct detection in YBa2Cu3O7 microbolometers. IEEE Trans. Terahertz Sci. Technol. 1, 390–394 (2011).
Liu, L. et al. Development of integrated terahertz broadband detectors utilizing superconducting hot-electron bolometers. IEEE Trans. Appl. Supercond. 19, 282–286 (2009).
Peng, K. et al. Single nanowire photoconductive terahertz detectors. Nano. Lett. 15, 206–210 (2014).
Gu, J. et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012).
Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013).
Tanoto, H. et al. Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer. Nat. Photon. 6, 121–126 (2012).
Heshmat, B. et al. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett. 12, 6255–6259 (2012).
Ward, J. S. et al. Tunable broadband frequency-multiplied terahertz sources. In 33rd Int. Conf. Infrared, Millimeter and Terahertz Waves 1–3 (IEEE, 2008).
Porterfield, D. W. High-efficiency terahertz frequency triplers. IEEE MTT-S Int. Microw. Symp. 337–340 (2007).
Mstrnini, A. et al. Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band. Proc. SPIE 8496, 84960F (2012).
Mehdi, I., Siles, J. V., Lee, C. & Schlecht, E. THz diode technology: status, prospects, and applications. Proc. IEEE 105, 990–1007 (2017).
Pardo, D., Grajal, J., Pe’rez-Moreno, C. G. & Prez, S. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies. IEEE Trans. Terahertz Sci. Technol. 4, 277–287 (2014).
Deal, W. R., Leong, K., Zamora, A., Radisic, V. & Mei, X. B. Recent progress in scaling InP HEMT TMIC technology to 850 GHz. IEEE MTT-S Int. Microw. Symp. 1–3 (2014).
Leong, K. M. K. H. et al. A 0.85 THz low noise amplifier using InP HEMT transistors. IEEE Microw. Wirel. Compon. Lett. 25, 397–399 (2015).
Kim, J., Jeon, S., Kim, M., Urteaga, M. & Jeong, J. H-band power amplifier integrated circuits using 250-nm InP HBT technology. IEEE Trans. Terahertz Sci. Technol. 5, 215–222 (2015).
Griffith, Z., Urteaga, M. & Rowell, P. 180–265 GHz, 17–24 dBm output power broadband, high-gain power amplifiers in InP HBT. IEEE MTT-S Int. Microw. Symp. 973–976 (2017).
Kang, S., Kim, D., Urteaga, M. & Seo, M. State-of-the-art THz integrated circuits in InP HBT technologies. IEEE Int. Symp. Radio-Freq. Int. Technol. 25–27 (2017).
Brown, E. R. et al. Oscillations up to 712 GHz in InAs/AlSb resonant tunneling diodes. Appl. Phys. Lett. 58, 2291–2293 (1991).
Reddy, M. et al. Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz. IEEE Electron Dev. Lett. 18, 218–221 (1997).
Kanaya, H., Maekawa, T., Suzuki, S. & Asada, M. Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times. Jpn J. Appl. Phys. 54, 094103 (2015).
Maekawa, T., Kanaya, H., Suzuki, S. & Asada, M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 9, 024101 (2016).
Suzuki, S., Shiraishi, M., Shibayama, H. & Asada, M. High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration. IEEE J. Sel. Top. Quantum Electron. 19, 8500108 (2013).
Duffy, S. M. et al. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power. IEEE Trans. Microw. Theory Tech. 49, 1032–1038 (2001).
Ito, H., Nakajima, F., Furuta, T. & Ishibashi, T. Continuous THz-wave generation using antenna-integrated unitravelling-carrier photodiodes. Semicond. Sci. Technol. 20, S191S198 (2005).
Yang, S. & Jarrahi, M. High-power continuous-wave terahertz generation through plasmonic photomixers. IEEE Int. Microw. Symp. 1–4 (IEEE, 2016).
Yang, S.-H. et al. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer. Opt. Express 23, 31206–31215 (2015).
Scheller, M., Yarborough, J. M., Moloney, J. V., Fallahi, M., Koch, M. & Koch, S. W. Room temperature continuous wave milliwatt terahertz source. Opt. Express 18, 27112–27117 (2010).
Lu, Q., Wu, D., Sengupta, S., Slivken, S. & Razeghi, M. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Sci. Rep. 6, 23595 (2016).
Hayashi, S. et al. High-brightness continuously tunable narrowband subterahertz wave generation.IEEE Trans. Terahertz Sci. Tech. 6, 858–861 (2016).
Huang, D. et al. 324 GHz CMOS frequency generator using linear superposition technique. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 476–477 (2008).
Seok, E. et al. A 410 GHz CMOS push–push oscillator with an on-chip patch antenna. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 472–473 (2008).
Hu, Z., Kaynak, M. & Han, R. High-power radiation at 1 THz in silicon: a fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid State Circuits 53, 1313–1327 (2018).
Ahmad, Z., Lee, M. & K. K. O. 1.4 THz, −13 dBm-EIRP frequency multiplier chain using symmetric- and asymmetric-CV varactors in 65 nm CMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 350–351 (2016).
Han, R. et al. A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated phase-locked loop. IEEE J. Solid State Circuits, 50, 2935–2947 (2015).
Pfeiffer, U. R. et al. A 0.53 THz reconfigurable source array with up to 1 mW radiated power for terahertz imaging applications in 0.13 μm SiGe BiCMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 256–257 (2014).
Gonzalez, G. Microwave Transistor Amplifiers: Analysis and Design. 2nd edn, (Prentice-Hall, Upper Saddle River, 1997).
Mei, X. et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Dev. Lett. 36, 327–329 (2015).
Urteaga, M. et al. 130 nm InP DHBTs with f t> 0.52 THz and fmax>1.1 THz. In Proc. 69th Annu. Device Res. Conf. 281–282 (IEEE, 2011).
Alexandrova, M., Flüeckiger, R., Lövblom, R., Ostinelli, O. & Bolognesi, C. R. GaAsSb-based DHBTs with a reduced base access distance and f T/f MAX = 503/780 GHz. IEEE Electron Dev. Lett. 35, 1218–1220 (2014).
Bolognesi, C. R. et al. InP/GaAsSb DHBTs for THz applications and improved extraction of their cutoff frequencies. IEEE Int. Electron Dev. Meeting Tech. Dig. 723–726 (2016).
Shinohara, K. et al. Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Dev. 60, 2982–2996 (2013).
Planes, N. et al. 28 nm FDSOI technology platform for high-speed low-voltage digital applications. Proc. Symp. VLSI Technol. 133–134 (2012).
Pekarik, J. J. et al. A 90nm SiGe BiCMOS technology for mm-wave and high performance analog applications. In Proc. Bipolar/BiCMOS Circuits and Technology Meeting 92–95 (IEEE, 2014).
Huylenbroeck, S. V. et al. Pedestal collector optimization for high speed SiGe:C HBT. In Proc. Bipolar/BiCMOS Circuits and Technology Meeting 66–69 (IEEE, 2011).
Heinemann, B. et al. SiGe HBT technology with f T/f max of 300GHz/500GHz and 2.0 ps CML gate delay. In IEEE Int. Electron Devices Meeting 30.5.1–30.5.4 (IEEE, 2010).
Heinemann, B. et al. SiGe HBT with f T/f max of 505 GHz/720 GHz. IEEE Int. Electron Devices Meeting 51–54 (IEEE, 2016).
Sengupta, K. & Hajimiri, A. 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid State Circuits 47, 3013–3031 (2012).
Jiang, C. et al. A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS. IEEE J. Solid State Circuits, 51, 2596–2609 (2016).
Al Hadi, R. et al. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid State Circuits, 47, 2999–3012 (2012).
Park. J., Kang, S., Thyagarajan, S., Alon, E. & Niknejad, A. M. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. 2012 Symp. VLSI Circuits 48–49 (IEEE, 2012).
Katayama, K. et al. A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over six channels. IEEE J. Solid State Circuits 51, 3037–3048 (2016).
Momeni, O. & Afshari, E. High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J. Solid State Circuits 46, 583–597 (2011).
Steyaert, W. & Reynaert, P. A 0.54 THz signal generator in 40 nm bulk CMOS with 22 GHz tuning range and integrated planar antenna. IEEE J. Solid State Circuits 49, 1617–1626 (2014).
Zhao, Y. et al. A 0.56 THz phase-locked frequency synthesizer in 65 nm CMOS technology. IEEE J. Solid State Circuits 51, 3005–3019 (2016).
Öjefors, E. et al. A 820 GHz SiGe chipset for terahertz active imaging applications. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 224–225 (2011).
Aghasi, H., Cathelin, A. & Afshari, E. A 0.92-THz SiGe power radiator based on a nonlinear theory for harmonic generation. IEEE J. Solid State Circuits 52, 406–422 (2017).
Tousi, Y. & Afshari, E. A High-power and scalable 2-D phased array for terahertz CMOS integrated system. IEEE J. Solid State Circuits 50, 597–609 (2015).
Jameson, S., Halpern, E. & Socher, E. A 300 GHz wirelessly locked 2×3 array radiating 5.4dBm with 5.1% DC-to-RF efficiency in 65nm CMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 348–349 (2016).
Zhao, Y. et al. A 0.54–0.55 THz 2×4 coherent source array with EIRP of 24.4 dBm in 65nm CMOS technology. IEEE MTT-S Int. Microw. Symp. 1–3 (2015).
Assefzadeh, M. M. & Babakhani, A. broadband oscillator-free THz pulse generation and radiation based on direct digital-to-impulse architecture. IEEE J. Solid State Circuits 52, 2905–2919 (2017).
Wu, X. & Sengupta, K. Dynamic waveform shaping with picosecond time widths. IEEE J. Solid State Circuits 52, 389–405 (2017).
Fang, T. et al. Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process. In IEEE Asian Solid State Circuits Conf. 189–192 (IEEE, 2017).
Ahmad, Z., Lisauskas, A., Roskos, H. G. & K. K. O. 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS. IEEE Int. Electron Devices Meeting 4.4.1–4.4.4 (IEEE, 2014).
Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current. Phys. Rev. Lett. 71, 2465–2468 (1993).
Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43, 380–387 (1996).
Knap., W. et al. Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002).
Shchepetov, A. et al. Oblique modes effect on terahertz plasma wave resonant detection in InGaAs/ InAlAs multichannel transistors. Appl. Phys. Lett. 92, 242105 (2008).
Öjefors, E., Pfeiffer, U. R., Lisauskas, A. & Roskos, H. G. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J. Solid State Circuits 44, 1968–1976 (2009).
Statnikov, K., Grzyb, J., Heinemann, B. & Pfeiffer, U. R. 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Trans. Microw. Theory Tech. 63, 520–532 (2015).
Tang, A. & Chang, M. C. F. Inter-modulated regenerative CMOS receivers operating at 349 and 495 GHz for THz imaging applications. IEEE Trans. Terahertz Sci. Technol. 3, 134–140 (2013).
Han, R. et al. Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J. Solid State Circuits 48, 2296–2308 (2013).
Sengupta, K., Seo, D. J., Yang, L. & Hajimiri, A. silicon integrated 280 GHz imaging chipset with 4× 4 SiGe receiver array and CMOS source. IEEE Trans. Terahertz Sci. Tech. 5, 427–437 (2015).
Wu, X. & Sengupta, K. On-chip THz spectroscope exploiting electromagnetic scattering with multi-port antenna. IEEE J. Solid State Circuits 51, 3049–3062 (2016).
Wu, X. & Sengupta, K. Single-chip source-free terahertz spectroscope across 0.04–0.99 THz: combining sub-wavelength near-field sensing and regression analysis. Opt. Express 26, 7163–7175 (2018).
Hillger, P. et al. A 128-pixel 0.56 THz sensing array for real-time near-field imaging in 0.13 µm SiGe BiCMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 418–419 (2018).
Thyagarajan, S. V., Kang, S. & Niknejad, A. M. A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS. IEEE J. Solid State Circuits 50, 2268–2280 (2015).
Sarmah, N. et al. A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans. Microw. Theory Tech. 64, 562–574 (2016).
Mendis, R. & Grischkowsky, D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001).
Hermelo, M. F., Shih, P.-T., Steeg, M., Ng’oma, A. & Stöhr, A. Spectral efficient 64-QAM-OFDM terahertz communication link. Opt. Express 25, 19360–19370 (2017).
Reichel, K., Mendis, R. & Mittleman, D. M. A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016).
Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).
Weidenbach, M. et al. 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz. Opt. Express 24, 28968–28976 (2016).
Yata, M., Fujita, M. & Nagatsuma, T. Photonic-crystal diplexers for terahertz-wave applications Opt. Express 24, 7835–7849 (2016).
Ma, J., Weidenbach, M., Guo, R., Koch, M. & Mittleman, D. M. Communications with THz waves: switching data between two waveguides. J. Infrared Millim. Terahertz Waves 38, 1316–1320 (2017).
Mottaghizadeh, A. et al. Nanoscale electromagnetic confinement in THz circuit resonators. Opt. Express 25, 28718–28730 (2017).
Paulillo, B. et al. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas. Opt. Express 22, 21302–21312 (2014).
Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).
Mendis, R. & Mittleman, D. M. Artificial dielectrics: ordinary metallic waveguides mimic extraordinary dielectric media. IEEE Microw. Mag. 15, 34–42 (2014).
Mendis, R., Nag, A., Chen, F. & Mittleman, D. M. A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides. Appl. Phys. Lett. 97, 131106 (2010).
Mendis, R., Nagai, M., Zhang, W. & Mittleman, D. M. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region. Sci. Rep. 7, 5909 (2017).
Reichel, K.S. et al. Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nat. Commun. 9, 4202 (2018).
Han, Z., Kohno, K., Fujita, H., Hirakawa, K. & Toshiyoshi, H. Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array. IEEE J. Sel. Top. Quantum Electron. 21, 2700809 (2014).
Sensale-Rodriguez, B., Yan, R., Liu, L., Jena, D. & Xing, H. G. Graphene for reconfigurable terahertz optoelectronics. Proc. IEEE 101, 1705–1716 (2013).
Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).
Mittendorff, M., Li, S. & Murphy, T. E. Graphene-based waveguide-integrated terahertz modulator. ACS Photon. 4, 316–321 (2017).
Karl, N. et al. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Appl. Phys. Lett. 104, 091115 (2014).
Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501–3506 (2015).
Singh, P. K. & Sonkusale, S. High speed terahertz modulator on the chip based on tunable terahertz slot waveguide. Sci. Rep. 7, 40933 (2017).
Sengupta, K. & Hajimiri, A. Designing optimal surface currents for efficient on-chip mm-wave radiators with active circuitry. IEEE Trans. Microw. Theory Tech. 64, 1976–1988 (2016).
Monnai, Y. et al. Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21, 2347–2354 (2013).
Scherger, B. et al. Discrete terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Millim. Terahertz Waves 33, 1117–1122 (2012).
Jha, K. R. & Singh, G. Terahertz planar antennas for future wireless communication: a technical review. Infrared Phys. Technol. 60, 71–80 (2013).
Xu, Z., Dong, X. & Bornemann, J. Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans. Terahertz Sci. Technol. 4, 609–617 (2014).
Akyildiz, I. F. & Jornet, J. M. Realizing ultra-massive mimo (1024×1024) communication in the (0.06–10) terahertz band. Nano Commun. Netw. 8, 46–54 (2016).
Ma, J., Karl, N. J., Bretin, S., Ducournau, G. & Mittleman, D. M. Frequency-division multiplexer and demultiplexer for terahertz wireless links. Nat. Commun. 8, 729 (2017).
Ma, J., Shrestha, R., Moeller, L. & Mittleman, D. M. Channel performance of indoor and outdoor terahertz wireless links. APL Photon. 3, 051601 (2018).
Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).
Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).
Nagatsuma, T. & Carpintero, G. Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron. E98C, 1060–1070 (2015).
Nagatsuma, T. et al. Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link. In 2016 IEEE Int. Topical Meet. Microw. Photon. 27–30 (IEEE, 2016).
Jia, S. et al. 0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate. J. Lightwave Technol. 36, 610–616 (2018).
Pang, X. et al. 260 Gbit/s photonic–wireless link in the THz band. In Proc. 2016 IEEE Photon. Conf. 1–2 (IEEE, 2016).
Hulme, J. et al. Fully integrated microwave frequency synthesizer on heterogeneous silicon- III/V. Opt. Express 25, 2422–2431 (2017).
Carpintero, G. et al. Microwave photonic integrated circuits for millimeter-wave wireless communications. J. Lightwave Technol. 32, 3495–3501 (2014).
Balakier, K., Ponnampalam, L., Fice, M. J., Renaud, C. C. & Seeds, A. J. Integrated semiconductor laser optical phase lock loops. IEEE J. Sel. Top. Quantum Electron. 24, 1500112 (2018).
Carpintero, G. et al. Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit. Sci. Rep. 8, 3018 (2018).
Volkaerts, W., Van Thienen, N. & Reynaert, P. An FSK plastic waveguide communication link in 40 nm CMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 178–179 (2015).
Van Thienen, N., Zhang, Y., De Wit., M. & Reynaert, P. An 18 Gbps polymer microwave fiber (PMF) communication link in 40 nm CMOS. In IEEE European Solid State Circuits Conf. 483–486 (IEEE, 2016).
Fischer, B., Hoffmann, M., Helm, H., Modjesch, G. & Jepsen, P. U. Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 20, S246–S253 (2005).
Kawase, K., Ogawa, Y., Watanabe, Y. & Inoue, H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003).
Mittleman, D. M., Jacobsen, R. H., Neelamani, R., Baraniuk, R. G. & Nuss, M. C. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B 67, 379–390 (1998).
Sampaolo, A. et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy. Sensors 16, 439 (2016).
Wang, C., Perkins, B., Wang, Z. & Han, R. Molecular detection for unconcentrated gas with ppm sensitivity using 220-to-320-GHz dual-frequency-comb spectrometer in CMOS. IEEE Trans. Biomed. Circuits Syst. 12, 709–721 (2018).
Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8, 605–609 (2014).
Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).
IEEE standard for high data rate wireless multi-media networks–amendment 2, 100 Gb/s wireless switched point-to-point physical layer. In IEEE Std 802.15.3d-2017 (amendment to IEEE Std 802.15.3–2016 as amended by IEEE Std 802.15.3e-2017) 1–55 (IEEE, 2017).
Shahramian, S., Holyoak, M., Singh, S., Farahani, B. J. & Baeyens, Y. A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 74–76 (2018).
Nagatsuma, T., Oogimoto, K., Inubushi, Y. & Hirokawa, J. Practical considerations of terahertz communications for short distance applications. Nano Commun. Netw. 10, 1–12 (2016).
Petrov, V. et al. Last meter indoor terahertz wireless access: performance insights and implementation roadmap. IEEE Commun. Mag. 56, 158–165 (2018).
Elayan, H., Amin, O., Shubair, R. M. & Alouini, M. Terahertz communication: the opportunities of wireless technology beyond 5G. In Int. Conf. Advanced Communication Technologies and Networking 1–5 (IEEE, 2018).
Rappaport, T. et al. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013).
Acknowledgements
The authors acknowledge the National Science Foundation, Office of Naval Research, the Army Research Office, the W. M. Keck Foundation, the Ministry of Internal Affairs and Communications (MIC) Japan and the Japan Science and Technology Agency (JST) for funding and all the group members of technical inputs.
Author information
Authors and Affiliations
Contributions
All of the authors contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sengupta, K., Nagatsuma, T. & Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron 1, 622–635 (2018). https://doi.org/10.1038/s41928-018-0173-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-018-0173-2
This article is cited by
-
Near-field sensor array with 65-GHz CMOS oscillators can rapidly and comprehensively evaluate drug susceptibility of Mycobacterium
Scientific Reports (2023)
-
Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision
Nature Communications (2023)
-
Electronic metadevices for terahertz applications
Nature (2023)
-
Terahertz Beam Steering: from Fundamentals to Applications
Journal of Infrared, Millimeter, and Terahertz Waves (2023)
-
An ultra-sensitive metasurface biosensor for instant cancer detection based on terahertz spectra
Nano Research (2023)