Van der Waals heterostructures are formed by stacking layers of different two-dimensional materials and offer the possibility to design new materials with atomic-level precision. By combining the valuable properties of different 2D systems, such heterostructures could potentially be used to address existing challenges in the development of electronic devices, particularly those that require vertical multi-layered structures. Here we show that robust memristors with good thermal stability, which is lacking in traditional memristors, can be created from a van der Waals heterostructure composed of graphene/MoS2–xO x /graphene. The devices exhibit excellent switching performance with an endurance of up to 107 and a high operating temperature of up to 340 °C. With the help of in situ electron microscopy, we show that the thermal stability is due to the MoS2–xO x switching layer, as well as the graphene electrodes and the atomically sharp interface between the electrodes and the switching layer. We also show that the devices have a well-defined conduction channel and a switching mechanism that is based on the migration of oxygen ions. Finally, we demonstrate that the memristor devices can be fabricated on a polyimide substrate and exhibit good endurance against over 1,000 bending cycles, illustrating their potential for flexible electronic applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41928-018-0044-x.

Change history

  • 09 March 2018

    In the version of this Article originally published, the author Xiaoqing Pan's two affiliations with the University of California, Irvine, were mistakenly omitted. They are: Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA; Department of Physics and Astronomy, University of California, Irvine, CA, USA. These have now been included in the Article.


  1. 1.

    Chua, L. O. Memristor - Missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

  2. 2.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

  3. 3.

    Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotech. 3, 429–433 (2008).

  4. 4.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

  5. 5.

    Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

  6. 6.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013).

  7. 7.

    Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

  8. 8.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

  9. 9.

    Prezioso, M. et al. Training andoperation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

  10. 10.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

  11. 11.

    Kozicki, M. N., Park, M. & Mitkova, M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331–338 (2005).

  12. 12.

    Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006).

  13. 13.

    Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

  14. 14.

    Rozenberg, M. J., Inoue, I. H. & Sanchez, M. J. Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302 (2004).

  15. 15.

    Lee, M. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10, 625–630 (2011).

  16. 16.

    Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

  17. 17.

    Kwon, D. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech. 5, 148–153 (2010).

  18. 18.

    Chen, C., Song, C., Yang, J., Zeng, F. & Pan, F. Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 100, 253509 (2012).

  19. 19.

    Lee, H. Y. et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. 2008 IEEE Int. Electron Dev. Meeting https://doi.org/10.1109/IEDM.2008.4796677 (2008).

  20. 20.

    Rahman, A. et al. A family of CMOS analog and mixed signal circuits in SiC for high temperature electronics. 2015 IEEE Aerospace Conf. https://doi.org/10.1109/AERO.2015.7119302 (2015).

  21. 21.

    Herfurth, P. et al. GaN-on-insulator technology for high-temperature electronics beyond 400 degrees C. Semicond. Sci. Tech. 28, 0740267 (2013).

  22. 22.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

  23. 23.

    Chae, S. H. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013).

  24. 24.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotech. 8, 952–958 (2013).

  25. 25.

    Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311–1314 (2013).

  26. 26.

    Long, M. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016).

  27. 27.

    Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

  28. 28.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

  29. 29.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

  30. 30.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  31. 31.

    Sahin, H. et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 80, 155453 (2009).

  32. 32.

    Miro, P., Audiffred, M. & Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014).

  33. 33.

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

  34. 34.

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

  35. 35.

    Tan, C., Liu, Z., Huang, W. & Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 44, 2615–2628 (2015).

  36. 36.

    Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

  37. 37.

    Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).

  38. 38.

    Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

  39. 39.

    Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotech. 10, 403–406 (2015).

  40. 40.

    Yao, J. et al. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012).

  41. 41.

    Yang, Y. et al. Oxide resistive memory with functionalized graphene as built-in selector element. Adv. Mater. 26, 3693–3699 (2014).

  42. 42.

    Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).

  43. 43.

    Liu, S. et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016).

  44. 44.

    Qian, M. et al. Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 26, 3275–3281 (2014).

  45. 45.

    Molina, J. et al. Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of Al/Al2O3/Al and Al/Al2O3/W structures fabricated on glass at 300 degrees C. Microelectron. Reliab. 54, 2747–2753 (2014).

  46. 46.

    Winer, W. O. Molybdenum disulfide as a lubricant - A review of fundamental knowledge. Wear 10, 422–450 (1967).

  47. 47.

    Martin, N., Rousselot, C., Rondot, D., Palmino, F. & Mercier, R. Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 300, 113–121 (1997).

  48. 48.

    Chiu, F. C., Wang, J. J., Lee, J. Y. & Wu, S. C. Leakage currents in amorphous Ta2O5 thin films. J. Appl. Phys. 81, 6911–6915 (1997).

  49. 49.

    Pennycook, S. J. & Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991).

  50. 50.

    Goldhirsch, I. & Ronis, D. Theory of thermophoresis. I. General considerations and mode-coupling analysis. Phys. Rev. A 27, 1616–1634 (1983).

  51. 51.

    Kempers, L. A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 115, 6330–6341 (2001).

  52. 52.

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

  53. 53.

    Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

  54. 54.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

  55. 55.

    Lee, G. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

Download references


This work was supported in part by the National Key Basic Research Program of China (2015CB921600, 2015CB654901 and 2013CBA01603), National Natural Science Foundation of China (61625402, 61574076, 11474147 and 11374142), Natural Science Foundation of Jiangsu Province (BK20140017 and BK20150055), Fundamental Research Funds for the Central Universities, and Collaborative Innovation Center of Advanced Microstructures. Y.Z and J.J.Y. was supported in part by the U.S. Air Force Research Laboratory (AFRL) (Grant No. FA8750-15-2-0044) and DARPA (Contract No. D17PC00304).

Author information

Author notes

  1. These authors contributed equally: Miao Wang and Songhua Cai.


  1. National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

    • Miao Wang
    • , Chen Pan
    • , Chenyu Wang
    • , Xiaojuan Lian
    • , Kang Xu
    • , Tianjun Cao
    • , Baigeng Wang
    • , Shi-Jun Liang
    •  & Feng Miao
  2. College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China

    • Songhua Cai
    • , Xiaoqing Pan
    •  & Peng Wang
  3. Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA

    • Ye Zhuo
    •  & J. Joshua Yang
  4. Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA

    • Xiaoqing Pan
  5. Department of Physics and Astronomy, Univeristy of California, Irvine, CA, USA

    • Xiaoqing Pan
  6. Center for the Microstructures of Quantum Materials and Research Center for Environmental Nanotechnology, Nanjing University, Nanjing, China

    • Peng Wang


  1. Search for Miao Wang in:

  2. Search for Songhua Cai in:

  3. Search for Chen Pan in:

  4. Search for Chenyu Wang in:

  5. Search for Xiaojuan Lian in:

  6. Search for Ye Zhuo in:

  7. Search for Kang Xu in:

  8. Search for Tianjun Cao in:

  9. Search for Xiaoqing Pan in:

  10. Search for Baigeng Wang in:

  11. Search for Shi-Jun Liang in:

  12. Search for J. Joshua Yang in:

  13. Search for Peng Wang in:

  14. Search for Feng Miao in:


F.M. and M.W. conceived the project and designed the experiments. M.W., C.P., C.W., X.L. and K.X. performed the device fabrication and electrical measurements. S.C., M.W. and P.W. carried out the in situ HRTEM and cross-section STEM experiments and analyses. M.W., F.M., X.L., T.C., Z.Y. and J.J. Yang conducted the data analyses and interpretations. F.M., M.W., S.C., S.L., P.W. and J.J. Yang co-wrote the paper, and all authors contributed to the discussions and preparation of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to J. Joshua Yang or Peng Wang or Feng Miao.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–8 and Supplementary Notes 1–4

About this article

Publication history






Further reading