Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient osmosis-powered production of green hydrogen

Abstract

Hydrogen, a clean energy carrier, has emerged as a promising solution to decarbonize the power sector and move towards a more sustainable future. However, the heavy dependence of its production on fossil fuels highlights the pressing need to prioritize the acquisition of green hydrogen from renewable sources, ideally without any additional energy input. Here we utilize the osmotic energy between seawater and freshwater to generate hydrogen directly. With a tandem of high-performance ion exchange membrane and electrocatalytic electrode, our design serves to harvest osmotic energy and drive hydrogen production. Notably, the integrated device demonstrates a consistent alkaline hydrogen evolution rate exceeding 300 l m−2 h−1 for more than 12 days under the artificial salinity gradient. Our study presents a viable pathway for hydrogen production through renewable sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superassembly of the integrated device for osmosis-powered hydrogen generation.
Fig. 2: Characterization of hybrid membrane and electrode.
Fig. 3: Ion transport and osmotic energy conversion of the hybrid membrane.
Fig. 4: Performance assessment of the hybrid electrode and integrated device.
Fig. 5: Mechanism of ion transport, regulation of Pd atom assembly and operation of the integrated device.

Similar content being viewed by others

Data availability

The Article and its Supplementary Information provide all relevant data substantiating the findings derived from this study. Source data are provided with this paper.

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  ADS  Google Scholar 

  2. Zhang, X. et al. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 5, 321–328 (2022).

    Article  Google Scholar 

  3. Zhou, M. et al. Environmental benefits and household costs of clean heating options in northern China. Nat. Sustain. 5, 329–338 (2022).

    Article  Google Scholar 

  4. Fedoseeva, S. & Zeidan, R. Tariff reduction on renewables inputs for European decarbonization. Nat. Sustain. 1, 436–440 (2018).

    Article  Google Scholar 

  5. Maugh, T. H. Hydrogen: synthetic fuel of the future. Science 178, 849–852 (1972).

    Article  PubMed  ADS  Google Scholar 

  6. Griffith, E. J. Hydrogen fuel. Nature 248, 458 (1974).

    Article  CAS  ADS  Google Scholar 

  7. Jacobson, M. Z., Colella, W. G. & Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308, 1901–1905 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Staffell, I. et al. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019).

    Article  CAS  Google Scholar 

  9. Navarro, R. M., Peña, M. A. & Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem. Rev. 107, 3952–3991 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Glenk, G. & Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019).

    Article  CAS  ADS  Google Scholar 

  11. Christopher, K. & Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 5, 6640–6651 (2012).

    Article  CAS  Google Scholar 

  12. Tiwari, J. N. et al. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat. Sustain. 3, 556–563 (2020).

    Article  Google Scholar 

  13. Yu, Z.-Y. et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 33, 2007100 (2021).

    Article  CAS  Google Scholar 

  14. Cai, Z.-X. et al. Tailored catalytic nanoframes from metal-organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 4747–4755 (2021).

    Article  CAS  Google Scholar 

  15. Luo, M. et al. Insights into alloy/oxide or hydroxide interfaces in Ni-Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. 14, 3400–3414 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong, W. et al. Electrolysis of low-grade and saline surface water. Nat. Energy 5, 367–377 (2020).

    Article  CAS  ADS  Google Scholar 

  17. Cârdu, M. & Baica, M. Regarding the greenhouse gas emissions of thermopower plants. Energy Convers. Manage. 43, 2135–2144 (2002).

    Article  Google Scholar 

  18. Cardu, M. & Baica, M. Regarding the relation between the NOx content and CO content in thermo power plants flue gases. Energy Convers. Manage. 46, 47–59 (2005).

    Article  CAS  Google Scholar 

  19. Cârdu, M. & Baica, M. On the relation between atmospheric pollution due to thermopower plants and the characteristics of their fuels. Energy Convers. Manage. 44, 1419–1431 (2003).

    Article  Google Scholar 

  20. Veers, P. et al. Grand challenges in the science of wind energy. Science 366, eaau2027 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Laing, T. Solar power challenges. Nat. Sustain. 5, 285–286 (2022).

    Article  Google Scholar 

  22. van Vliet, M. T. H., Wiberg, D., Leduc, S. & Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Change 6, 375–380 (2016).

    Article  ADS  Google Scholar 

  23. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Siria, A. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, Y. & Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy hyarvesting. Joule 4, 2244–2248 (2020).

    Article  Google Scholar 

  27. Xiao, K., Jiang, L. & Antonietti, M. Ion transport in nanofluidic devices for energy harvesting. Joule 3, 2364–2380 (2019).

    Article  CAS  Google Scholar 

  28. Zhu, Y., Zhan, K. & Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 12, 908–911 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Pakulski, D., Czepa, W., Buffa, S. D., Ciesielski, A. & Samorì, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. 30, 1902394 (2019).

    Article  Google Scholar 

  30. Troyano, J., Carné-Sánchez, A., Avci, C., Imaz, I. & Maspoch, D. Colloidal metal-organic framework particles: the pioneering case of ZIF-8. Chem. Soc. Rev. 48, 5534–5546 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Han, A. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3, 1800471 (2019).

    Article  Google Scholar 

  32. Liang, Q. et al. General synergistic capture-bonding superassembly of atomically dispersed catalysts on micropore-vacancy frameworks. Nano Lett. 22, 2889–2897 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Kim, M. et al. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat. Protoc. 17, 2990–3027 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  34. Zhang, J. et al. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. 55, 2230–2234 (2016).

    Article  CAS  Google Scholar 

  35. Zhang, Z. et al. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 11, 875 (2020).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Zhou, S. et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 31, e1900509 (2019).

    Article  PubMed  Google Scholar 

  37. Hou, S. et al. Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion. Angew. Chem. Int. Ed. 60, 9925–9930 (2021).

    Article  CAS  Google Scholar 

  38. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Huang, Y. et al. Super-assembled chiral mesostructured heteromembranes for smart and sensitive couple-accelerated enantioseparation. J. Am. Chem. Soc. 144, 13794–13805 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Yang, J. et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat. Nanotechnol. 17, 622–628 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Liang, Q. et al. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy 57, 746–752 (2019).

    Article  CAS  Google Scholar 

  42. Wen, L., Xu, R., Mi, Y. & Lei, Y. Multiple nanostructures based on anodized aluminium oxide templates. Nat. Nanotechnol. 12, 244–250 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Zhang, X. et al. Interfacial superassembly of mesoporous titania nanopillar-arrays/alumina oxide heterochannels for light- and pH-responsive smart ion transport. ACS Cent. Sci. 8, 361–369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Li, R., Jiang, J., Liu, Q., Xie, Z. & Zhai, J. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 53, 643–649 (2018).

    Article  CAS  Google Scholar 

  46. Zhang, Z. et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv. Mater. 28, 144–150 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.K. acknowledges funding from the National Natural Science Foundation of China (21974029, 3022105042), the Yiwu Research Institute Program of Fudan University (20-1-28), the Yantai Science and Technology Innovation Development Plan (No. 2022ZDCX015), and the construction project of Shanghai Key Laboratory of Molecular Imaging (18DZ2260400). We thank O. Terasaki (ShanghaiTech University) for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Contributions

B.K. conceived the work and directed the project. Q.L. and B.K. designed the experiments and drafted the initial manuscript. Y.H., Y.G. and X.Z. helped with computational calculations. X.H. and H.Z. contributed to experimental data collection and analysis. B.K., L.J., D.Z. and K.L. supervised the research, discussed the results, provided useful suggestions on experiment designs, and helped revise the manuscript.

Corresponding author

Correspondence to Biao Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Jia Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–56, Notes 1–4 and Tables 1–8.

Reporting Summary

Source data

Source Data Fig. 2

XPS results, source data.

Source Data Fig. 3

Electrochemical results, source data.

Source Data Fig. 4

Electrochemical results, source data.

Source Data Fig. 5

Simulation parameter, source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Huang, Y., Guo, Y. et al. Efficient osmosis-powered production of green hydrogen. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01317-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing