Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Space bioprocess engineering as a potential catalyst for sustainability

Abstract

Investment in spacefaring enterprises must offer transformative solutions to Earth-based challenges. Providing for the future health of our home planet is possibly the greatest return on investment. Therefore, ensuring that the large costs of astronautics also yield benefits on Earth is critical. The goal of space bioprocess engineering is the design, realization and management of biologically driven technologies for supporting off-world human exploration. Here, we outline several technologies with high dual-use potential, argue that continued investment in such technologies is justified, and offer insight into specific research and development strategies that will increase sociological, political and technological benefits for sustainable development on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scott-Heron, G. Small Talk at 125th and Lenox (Flying Dutchman/RCA Records, 1970).

  2. Smith, M. et al. The Artemis program: an overview of NASA’s activities to return humans to the Moon. In Proc. 2020 IEEE Aerospace Conference 1–10 (IEEE, 2020); https://ieeexplore.ieee.org/document/9172323

  3. Loyd, J. M. in Mobile Desires: The Politics and Erotics of Mobility Justice (eds Montegary, L. & White, M. A.) 41–52 (Springer, 2015); https://doi.org/10.1057/9781137464217_4%0A%0A

  4. Maher, N. M. Grounding the space race. Mod. Am. Hist. 1, 141–146 (2018).

    Article  Google Scholar 

  5. Free, J. M. & Roe, R. NASA’s Management of the Artemis Missions Techical Report IG-22-003 (National Aeronautics and Space Administration, 2021); https://oig.nasa.gov/docs/IG-22-003.pdf

  6. Jones, H. Humans to Mars will cost about “half a trillion dollars" and life support roughly two billion dollars. In Proc. 46th International Conference on Environmental Systems Paper ICES-2016-111 (International Conference on Environmental Systems, 2016); https://ttu-ir.tdl.org/handle/2346/67531

  7. Hertzfeld, H. R. Measuring the economic returns from successful NASA life sciences technology transfers. J. Technol. Transf. 27, 311–320 (2002).

    Article  PubMed  Google Scholar 

  8. Autry, G. America’s investment in space pays dividends. Forbes https://www.forbes.com/sites/gregautry/2017/07/09/americas-investment-in-space-pays-dividends/ (2017).

  9. Returns and Benefits from Public Space Investments 2021 (UK Space Agency, 2022); https://www.gov.uk/government/publications/returns-and-benefits-from-public-space-investments-2021

  10. Berliner, A. J. et al. Space bioprocess engineering on the horizon. Commun. Eng. 1, 13 (2022).

    Article  Google Scholar 

  11. Talbert, T. & Green, M. Space Technology Grand Challenges (National Aeronautics and Space Administration, 2010).

  12. Ekins, P. & Zenghelis, D. The costs and benefits of environmental sustainability. Sustain. Sci. 16, 949–965 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Söderholm, P. The green economy transition: the challenges of technological change for sustainability. Sustain. Earth Rev. 3, 6 (2020).

    Article  ADS  Google Scholar 

  14. Renault, M. Mars mission could bring health benefits on Earth. Nat. Med. 28, 216–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Averesch, N. J. H. et al. Microbial biomanufacturing for space-exploration—what to take and when to make. Nat. Commun. 14, 2311 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Santomartino, R. et al. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat. Commun. 14, 1391 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Thriving in Space: Ensuring the Future of Biological and Physical Sciences Research: A Decadal Survey for 2023–2032 (National Academies Press, 2023); https://nap.nationalacademies.org/catalog/26750/thriving-in-space-ensuring-the-future-of-biological-and-physical-sciences-research-a-decadal-survey-for-2023-2032

  18. Lockney, D. (ed.) NASA Spinoff https://spinoff.nasa.gov/ (2022).

  19. Earle, K. D. et al. Strategic framework for NASA’s Space Technology Mission Directorate. In Proc. 2018 AIAA SPACE and Astronautics Forum and Exposition AIEE 2018-5136 (American Institute of Aeronautics and Astronautics, 2018); https://arc.aiaa.org/doi/abs/10.2514/6.2018-5136

  20. Sanders, G. B. & Kleinhenz, J. E. NASA envisioned future priorities for in situ resource utilization. In Proc. 73rd International Astronautical Congress (IAC) (International Astronautical Federation, 2022); https://ntrs.nasa.gov/citations/20220012448

  21. Moroni, L. et al. What can biofabrication do for space and what can space do for biofabrication? Trends Biotechnol. 40, 398–411 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Bar-Even, A. Daring metabolic designs for enhanced plant carbon fixation. Plant Sci. 273, 71–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. DeLisi, C. et al. The role of synthetic biology in atmospheric greenhouse gas reduction: prospects and challenges. Biodes. Res. 2020, 1016207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ghidini, T. Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J. Thorac. Dis. 10, S2363–S2375 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Walker, J. & Granjou, C. MELiSSA the minimal biosphere: human life, waste and refuge in deep space. Futures 92, 59–69 (2017).

    Article  Google Scholar 

  26. Niederwieser, T., Kociolek, P. & Klaus, D. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications. Life Sci. Space Res. 16, 8–17 (2018).

    Article  ADS  Google Scholar 

  27. McNulty, M. J. et al. Molecular pharming to support human life on the Moon, Mars, and beyond. Crit. Rev. Biotechnol. 41, 849–864 (2021).

    Article  PubMed  Google Scholar 

  28. Mortimer, J. C. & Gilliham, M. SpaceHort: redesigning plants to support space exploration and on-Earth sustainability. Curr. Opin. Biotechnol. 73, 246–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Nosseir, A. E. S., Cervone, A. & Pasini, A. Modular impulsive green monopropellant propulsion system (MIMPS-G): for CubeSats in LEO and to the Moon. Aerospace 8, 169 (2021).

    Article  Google Scholar 

  30. Cruz-Morales, P. et al. Biosynthesis of polycyclopropanated high energy biofuels. Joule 6, 1590–1605 (2022).

    Article  CAS  Google Scholar 

  31. Abel, A. J. et al. Photovoltaics-driven power production can support human exploration on Mars. Front. Astron. Space Sci. 9, 868519 (2022).

    Article  ADS  Google Scholar 

  32. Grossi, E. N. et al. Potential applications for bioelectrochemical systems for space exploration. In Proc. 43rd International Conference on Environmental Systems AIAA 2013-3331 (American Institute of Aeronautics and Astronautics, 2013); https://arc.aiaa.org/doi/10.2514/6.2013-3331

  33. Averesch, N. J. H. & Rothschild, L. J. Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid – unexpected importance of carbon source is an advantage for space application. Microb. Biotechnol. 12, 703–714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cestellos-Blanco, S. et al. Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front. Microbiol. 12, 700010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Urbina, J. et al. A new approach to biomining: bioengineering surfaces for metal recovery from aqueous solutions. Sci. Rep. 9, 16422 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Cockell, C. S. et al. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11, 5523 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

    Article  PubMed  Google Scholar 

  38. Szocik, K. & Reiss, M. J. Why space exploitation may provide sustainable development: climate ethics and the human future as a multi-planetary species. Futures 147, 103110 (2023).

    Article  Google Scholar 

  39. Maiwald, V., Schubert, D., Quantius, D. & Zabel, P. From space back to Earth: supporting sustainable development with spaceflight technologies. Sustain. Earth 4, 3 (2021).

    Article  ADS  Google Scholar 

  40. Maiwald, V. Frameworks of sustainability and sustainable development in a spaceflight context: a systematic review and critical analysis. Acta Astronaut. https://doi.org/10.1016/j.actaastro.2023.01.023 (2023).

  41. Colglazier, W. Sustainable development agenda: 2030. Science 349, 1048–1050 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Lee, B. X. et al. Transforming our world: implementing the 2030 agenda through Sustainable Development Goal Indicators. J. Public Health Policy 37, 13–31 (2016).

    Article  PubMed  Google Scholar 

  43. Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Policy: five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).

    Article  PubMed  ADS  Google Scholar 

  44. Maibach, E. W., Nisbet, M., Baldwin, P., Akerlof, K. & Diao, G. Reframing climate change as a public health issue: an exploratory study of public reactions. BMC Public Health 10, 299 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Agarwal, A. & Narain, S. in India in a Warming World: Integrating Climate Change and Development (ed. Dubash, N. K.) 81–91 (Oxford Univ. Press, 2019); https://doi.org/10.1093/oso/9780199498734.003.0005

  46. Murad, S. et al. Molecular pharming for low and middle income countries. Curr. Opin. Biotechnol. 61, 53–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Bentahir, M., Barry, M. D., Koulemou, K. & Gala, J.-L. Providing on-site laboratory and biosafety just-in-time training inside a box-based laboratory during the West Africa Ebola outbreak: supporting better preparedness for future health emergencies. Int. J. Environ. Res. Public Health 19, 11566 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weisbin, C. R. et al. Capability development return on investment for the NASA aeronautics program. In Proc. 18th International Conference on Systems Engineering (ICSEng05) 231–237 (IEEE, 2005); https://doi.org/10.1109/ICSENG.2005.21

  49. Berger, E. Report finds that US accounts for more than half of global space spending. Ars Technica https://arstechnica.com/science/2022/01/report-finds-that-us-accounts-for-more-than-half-of-global-space-spending/ (2022).

  50. Tollefson, J. IPCC says limiting global warming to 1.5 °C will require drastic action. Nature 562, 172–174 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. United Nations Department of Economic and Social Affairs World Population Prospects 2022: Data Sources Report UN DESA/POP/2022/DC/NO. 9 (United Nations, 2022); https://population.un.org/wpp/Publications/Files/WPP2022_Data_Sources.pdf

  52. Joint Statement of Janet L. Yellen, Secretary of the Treasury, and Shalanda D. Young, Director of the Office of Management and Budget, on budget results for fiscal year 2023. US Department of the Treasury https://home.treasury.gov/news/press-releases/jy1829 (2023).

  53. Budget of the U.S. Government: Fiscal Year 2023 (Office of Management and Budget, 2022); https://www.whitehouse.gov/wp-content/uploads/2022/03/budget_fy2023.pdf

  54. Rhodes, R. E., Henderson, E. M. & Robinson, J. W. Choices for long term sustainable space exploration and habitation with recommended near term focus. In Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2014-3648 (American Institute of Aeronautics and Astronautics, 2014).

  55. Boden, T., Andres, R. & Marland, G. Global, Regional, and National Fossil-Fuel CO2 Emissions (1751 - 2014) (V. 2017) (Office of Scientific and Technical Information, 2017); https://www.osti.gov/servlets/purl/1389331/

  56. Nakahodo, S. N. & Gonzalez, S. Creating startups with NASA technology. New Space 8, 137–145 (2020).

    Article  ADS  Google Scholar 

  57. Griffin, M. D. The Space Economy (National Aeronautics and Space Administration, 2007); https://www.i-mti.com/NASA_SE_20070917_ExcerptHiL.pdf

  58. Globus, A. Sourcing and Sustaining Optimum Financing (National Space Society, 2018); https://space.nss.org/settlement/nasa/spaceresvol4/references.html

  59. Der, V. K. Clean Coal Technology Programs: Program Update 2009 (US Department of Energy, 2009); https://www.osti.gov/biblio/970830

  60. Lozano, R., Carpenter, A. & Huisingh, D. A review of ‘theories of the firm’ and their contributions to corporate sustainability. J. Clean. Prod. 106, 430–442 (2015).

    Article  Google Scholar 

  61. Dyllick, T. & Hockerts, K. Beyond the business case for corporate sustainability. Bus. Strategy Environ. 11, 130–141 (2002).

    Article  Google Scholar 

  62. Crawford, I. A. Lunar resources: a review. Prog. Phys. Geogr. 39, 137–167 (2015).

    Article  Google Scholar 

  63. Sharma, A. et al. Biomanufacturing in low Earth orbit for regenerative medicine. Stem Cell Rep. 17, 1–13 (2022).

    Article  Google Scholar 

  64. Romero, E. & Francisco, D. The NASA human system risk mitigation process for space exploration. Acta Astronaut. 175, 606–615 (2020).

    Article  ADS  Google Scholar 

  65. Apul, O., Grissom, R., Damali, U. & Toof, R. Divided perception of drinking water safety: another manifestation of America’s racial gap. ACS EST Water 1, 6–7 (2021).

    Article  CAS  Google Scholar 

  66. Batelaan, K. ‘It’s not the science we distrust; it’s the scientists’: reframing the anti-vaccination movement within Black communities. Glob. Public Health 17, 1099–1112 (2022).

    Article  PubMed  Google Scholar 

  67. Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development (United Nations, 2019); https://sustainabledevelopment.un.org/content/documents/24797GSDR_report_2019.pdf

  68. Hernandez-Aguilera, J. N. et al. Supporting interdisciplinary careers for sustainability. Nat. Sustain. 4, 374–375 (2021).

    Article  Google Scholar 

  69. Roy, J. R. in Engineering and Engineering Technology by the Numbers, 2019 1–40 (American Society for Engineering Education, 2020).

  70. Technology Drives Exploration (National Aeronautics and Space Administration, 2014); https://www.nasa.gov/sites/default/files/atoms/files/stmd_technology_drives_exploration_508_8_11_2016.pdf

  71. Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green. Chem. 19, 18–43 (2017).

    Article  CAS  Google Scholar 

  72. Sheldon, R. A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48 (2018).

    Article  CAS  Google Scholar 

  73. Fiorentino, G., Ripa, M. & Ulgiati, S. Chemicals from biomass: technological versus environmental feasibility. A review. Biofuel. Bioprod. Biorefin. 11, 195–214 (2017).

    Article  CAS  Google Scholar 

  74. Clauser, N. M. et al. Biomass waste as sustainable raw material for energy and fuels. Sustainability 13, 794 (2021).

    Article  CAS  Google Scholar 

  75. Mankins, J. C. Technology readiness assessments: a retrospective. Acta Astronaut. 65, 1216–1223 (2009).

    Article  ADS  Google Scholar 

  76. Frerking, M. A. & Beauchamp, P. M. JPL technology readiness assessment guideline. In Proc. 2016 IEEE Aerospace Conference 1–10 (IEEE, 2016); https://doi.org/10.1109/AERO.2016.7500924

  77. Smanski, M. J. et al. Bioindustrial manufacturing readiness levels (BioMRLs) as a shared framework for measuring and communicating the maturity of bioproduct manufacturing processes. J. Ind. Microbiol. Biotechnol. 49, kuac022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schlosberg, D. & Collins, L. B. From environmental to climate justice: climate change and the discourse of environmental justice. WIREs Clim. Change 5, 359–374 (2014).

    Article  Google Scholar 

  79. Dietz, T., Shwom, R. L. & Whitley, C. T. Climate change and society. Annu. Rev. Sociol. 46, 135–158 (2020).

    Article  Google Scholar 

  80. NASA Strategic Space Technology Investment Plan 2017 (National Aeronautics and Space Administration, 2017); https://www.nasa.gov/sites/default/files/atoms/files/2017-8-1_stip_final-508ed.pdf

  81. Sadler, P. et al. Bio-regenerative life support systems for space surface applications. In Proc. 41st International Conference on Environmental Systems AIAA 2011-5133 (American Institute of Aeronautics and Astronautics, 2011); https://doi.org/10.2514/6.2011-5133

  82. Giacomelli, G. et al. Bio-regenerative life support system development for lunar/Mars habitats. In Proc. 42nd International Conference on Environmental Systems AIAA 2012-3463 (American Institute of Aeronautics and Astronautics, 2012); https://doi.org/10.2514/6.2012-3463

  83. Rai, I., Ahirwar, A., Rai, A., Varjani, S. & Vinayak, V. Biowaste recycling strategies for regenerative life support system: an overview. Sustain. Energy Technol. Assess. 53, 102525 (2022).

    Google Scholar 

  84. Gòdia, F. et al. MELISSA: a loop of interconnected bioreactors to develop life support in space. J. Biotechnol. 99, 319–330 (2002).

    Article  PubMed  Google Scholar 

  85. Vermeulen, A. C. J., Papic, A., Nikolic, I. & Brazier, F. Stoichiometric model of a fully closed bioregenerative life support system for autonomous long-duration space missions. Front. Astron. Space Sci. 10, 1198689 (2023).

    Article  ADS  Google Scholar 

  86. Ilgrande, C. et al. Reactivation of microbial strains and synthetic communities after a spaceflight to the International Space Station: corroborating the feasibility of essential conversions in the MELiSSA loop. Astrobiology 19, 1167–1176 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  87. Garcia-Gragera, D. et al. Integration of nitrifying, photosynthetic and animal compartments at the MELiSSA Pilot Plant. Front. Astron. Space Sci. 8, 750616 (2021).

    Article  Google Scholar 

  88. Zabel, P. et al. Introducing EDEN ISS – a European project on advancing plant cultivation technologies and operations. Zenodo https://zenodo.org/record/34391 (2015).

  89. Zabel, P., Vrakking, V., Zeidler, C. & Schubert, D. Energy and power demand of food production in space based on results of the EDEN ISS Antarctic greenhouse. In Proc. 51st International Conference on Environmental Systems Paper ICES-2022-87 (International Conference on Environmental Systems, 2022); https://ttu-ir.tdl.org/handle/2346/89625

  90. Pattison, P. M., Tsao, J. Y., Brainard, G. C. & Bugbee, B. LEDs for photons, physiology and food. Nature 563, 493–500 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  91. Soundararajan, M. et al. Phototrophic N2 and CO2 fixation using a Rhodopseudomonas palustris-H2 mediated electrochemical system with infrared photons. Front. Microbiol. 10, 1817 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cestellos-Blanco, S., Zhang, H. & Yang, P. Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids. Faraday Discuss. 215, 54–65 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  93. Santomartino, R., Zea, L. & Cockell, C. S. The smallest space miners: principles of space biomining. Extremophiles 26, 7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. French, K. E. Harnessing synthetic biology for sustainable development. Nat. Sustain. 2, 250–252 (2019).

    Article  Google Scholar 

  95. Taherzadeh, M. J. Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered 10, 698–699 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Honan, M., Feng, X., Tricarico, J. M. & Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. Anim. Prod. Sci. https://doi.org/10.1071/AN20295 (2021).

  97. Jansson, C. et al. Crops for carbon farming. Front. Plant Sci. 12, 636709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Solé, R. Bioengineering the biosphere? Ecol. Complex. 22, 40–49 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA under award numbers NNX17AJ31G and 80NSSC22K1474. Any conclusions, recommendations, or opinions expressed in this material are those of the authors and do not necessarily reflect the views of NASA. The content of this publication has not been approved by the United Nations and does not reflect the views of the United Nations or its officials or Member States. We thank D. Ho for graphics used in Table 1. Furthermore, we thank J. King, D. Hall, S. N. Nangle, B. Biggs, J. A. Hogan and A. J. Abel for their constructive comments on early drafts of this manuscript. We thank Professor A. P. Arkin for his continued patience in reviewing and re-reviewing the manuscript and for his watchful eye over our efforts.

Author information

Authors and Affiliations

Authors

Contributions

All authors (G.V., I.L., G.A.H., N.J.H.A. and A.J.B.) developed, wrote and edited the manuscript, led by A.J.B.

Corresponding authors

Correspondence to Nils J. H. Averesch or Aaron J. Berliner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Volker Maiwald, Rosa Santomartino and Mamta Patel Nagaraja for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion (describing examples of technologies with aspects of SBE), Tables 1 and 2 and refs. 1–58.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vengerova, G., Lipsky, I., Hutchinson, G.A. et al. Space bioprocess engineering as a potential catalyst for sustainability. Nat Sustain 7, 238–246 (2024). https://doi.org/10.1038/s41893-024-01305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01305-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research