Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Safe electrolyte for long-cycling alkali-ion batteries

Subjects

Abstract

Safety is essential to battery sustainability, particularly considering that flammable organic molecules still dominate the electrolyte formulation. For a single electrolyte chemistry, improving its safety is often at the expense of cost and the battery’s electrochemical performance. Here we show an electrolyte that breaks this trade-off with combined flame retardancy, cost advantage and excellent cycling performance in both potassium-ion and lithium-ion batteries. Our rational design is to tame the flammability of a commonly used glyme solvent by introducing a fluorinated liquid and a non-polar solvent, known on the market as Novec 7300 coolant fluid and Daikin-T5216, respectively. The formulated electrolyte with excellent chemical and thermal stability proves non-flammable and works in a wide working temperature range of −75 to 80 °C. When assembled in potassium metal batteries, the K||K cell sustains cycling for >12 months, and the K||graphite cell retains 93% of its initial capacity after 2,400 cycles. Even in a 18650 Li-ion cell under harsh conditions (N/P = 1.08, E/C = 3.0 g Ah−1), the capacity retention is as high as 96.7% after cycling more than 200 times. Together with low cost, the current formulation suggests new space in electrolyte design where nearly all factors that matter to the sustainability of batteries can be well balanced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrolyte designs.
Fig. 2: Characteristics, safety and theoretical study of the designed electrolyte.
Fig. 3: Electrochemical performance of K anodes.
Fig. 4: Long-term stability of graphite cells is enabled by a beneficial SEI chemistry.
Fig. 5: The high-voltage and full-cell properties.
Fig. 6: Universality, temperature sustainability and scalability of our tamed electrolyte.

Similar content being viewed by others

Data availability

All relevant data are included in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Bauer, C. et al. Charging sustainable batteries. Nat. Sustain. 5, 176–178 (2022).

    Article  Google Scholar 

  2. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ge, J. et al. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022).

    Article  Google Scholar 

  5. Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018).

    Article  Google Scholar 

  6. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  ADS  CAS  Google Scholar 

  7. Jiang, H. et al. Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6, 806–815 (2023).

    Article  Google Scholar 

  8. Xu, J. et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614, 694–700 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yin, Y. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 7, 548–559 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Srinivasan, R. et al. Preventing cell-to-cell propagation of thermal runaway in lithium-ion batteries. J. Electrochem. Soc. 167, 020559 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating thermal runaway of lithium-ion batteries. Joule 4, 743–770 (2020).

    Article  CAS  Google Scholar 

  12. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article  CAS  Google Scholar 

  14. Fan, L. et al. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ. Sci. 16, 305–315 (2023).

    Article  CAS  Google Scholar 

  15. Zheng, X. et al. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 13, 1788–1798 (2020).

    Article  CAS  Google Scholar 

  16. Wang, J. et al. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 3, 22–29 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Liu, S. et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem. Int. Ed. 59, 3638–3644 (2020).

    Article  CAS  Google Scholar 

  18. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  19. Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Review—localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021).

    Article  CAS  Google Scholar 

  21. Jiang, Z. et al. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Stor. Mater. 36, 333–340 (2021).

    Google Scholar 

  22. Wu, Y. et al. Significance of antisolvents on solvation structures enhancing interfacial chemistry in localized high-concentration electrolytes. ACS Cent. Sci. 8, 1290–1298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin, M. et al. Dipole–dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design. Energy Environ. Sci. 16, 546–556 (2023).

    Article  CAS  Google Scholar 

  24. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  ADS  CAS  Google Scholar 

  25. Sui, Y., Yu, M., Xu, Y. & Ji, X. Low-temperature aqueous batteries: challenges and opportunities. J. Electrochem. Soc. 169, 030537 (2022).

    Article  ADS  CAS  Google Scholar 

  26. Xiao, J. et al. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023).

    Article  ADS  Google Scholar 

  27. Shin, W. et al. Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions. Mater. Today 40, 63–71 (2020).

    Article  CAS  Google Scholar 

  28. Sinha-Ray, S. et al. Pool boiling of Novec 7300 and DI water on nano-textured heater covered with supersonically-blown or electrospun polymer nanofibers. Int. J. Heat Mass Transf. 106, 482–490 (2017).

    Article  CAS  Google Scholar 

  29. Bruder, M., Riffat, P. & Sattelmayer, T. Identification of universal heat transfer characteristics along the boiling curve for vertical subcooled flow boiling of refrigerant Novec 649. Heat Mass Transf. 55, 3493–3507 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Babushok, V. I., Katta, V. R. & Takahashi, F. Equivalence ratio influence on the flame suppressant concentration of 2-BTP and Novec 1230. Combust. Sci. Technol. 194, 1943–1953 (2022).

    Article  CAS  Google Scholar 

  31. Yang, Y. et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy Environ. Sci. 13, 2209–2219 (2020).

    Article  CAS  Google Scholar 

  32. Falzone, A., Sunstrom, J., Grumbles, E. & Hendershot, R. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte Technical Report 1345663 (OSTI.GOV, 2017).

  33. Sunstrom, J. et al. Pushing the Energy Limits of Lithium Ion Batteries Through Fluorinated Materials Technical Paper 2019-01-0595 (SAE International, 2019).

  34. Sun, Q. et al. Dipole–dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries. ACS Energy Lett. 7, 3545–3556 (2022).

    Article  CAS  Google Scholar 

  35. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  36. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  37. Ding, H. et al. Building electrode skins for ultra-stable potassium metal batteries. Nat. Commun. 14, 2305 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yi, X., Rao, A. M., Zhou, J. & Lu, B. Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries. Nanomicro Lett. 15, 200 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, G. et al. Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes. Adv. Energy Mater. 9, 1900704 (2019).

    Article  Google Scholar 

  40. Karimi, N., Varzi, A. & Passerini, S. A comprehensive insight into the volumetric response of graphite electrodes upon sodium co-intercalation in ether-based electrolytes. Electrochim. Acta 304, 474–486 (2019).

    Article  CAS  Google Scholar 

  41. Li, J. et al. Weak cation–solvent interactions in ether-based electrolytes stabilizing potassium-ion batteries. Angew. Chem. Int. Ed. 61, e202208291 (2022).

    Article  ADS  CAS  Google Scholar 

  42. López, G. P., Castner, D. G. & Ratner, B. D. XPS O1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17, 267–272 (1991).

    Article  Google Scholar 

  43. Wang, H., Zhai, D. & Kang, F. Solid electrolyte interphase (SEI) in potassium ion batteries. Energy Environ. Sci. 13, 4583–4608 (2020).

    Article  CAS  Google Scholar 

  44. Li, S. et al. Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 13, 4911 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H. et al. Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew. Chem. Int. Ed. 58, 16451–16455 (2019).

    Article  CAS  Google Scholar 

  46. Zhang, C. et al. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 27, 1604307 (2017).

    Article  Google Scholar 

  47. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article  PubMed  Google Scholar 

  48. Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    Article  CAS  Google Scholar 

  49. Yi, X. et al. Quasi-solid aqueous electrolytes for low-cost sustainable alkali metal batteries. Adv. Mater. 35, 2302280 (2023).

    Article  CAS  Google Scholar 

  50. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  ADS  CAS  Google Scholar 

  51. MacNeil, D. D., Trussler, S., Fortier, H. & Dahn, J. R. A novel hermetic differential scanning calorimeter (DSC) sample crucible. Thermochim. Acta 386, 153–160 (2002).

    Article  CAS  Google Scholar 

  52. Feng, X. et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 255, 294–301 (2014).

    Article  ADS  CAS  Google Scholar 

  53. Frisch, M. J. G. et al. Gaussian 16, Revision C.01 (Gaussian, 2019).

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  PubMed  Google Scholar 

  55. Johnson, E. R. & Becke, A. D. A post-Hartree–Fock model of intermolecular interactions. J. Chem. Phys. 123, 024101 (2005).

    Article  ADS  Google Scholar 

  56. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Papajak, E. et al. Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 7, 3027–3034 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Laming, G. J., Termath, V. & Handy, N. C. A general purpose exchange‐correlation energy functional. J. Chem. Phys. 99, 8765–8773 (1993).

    Article  ADS  CAS  Google Scholar 

  59. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J. & Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001).

    Article  CAS  Google Scholar 

  60. Jorgensen, W. L. & Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl Acad. Sci. USA 102, 6665–6670 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  62. Jewett, A. I. et al. Moltemplate: a tool for coarse-grained modeling of complex biological matter and soft condensed matter physics. J. Mol. Biol. 433, 166841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by two grants from the National Natural Science Foundation of China (No. U20A20247 and 51922038 to B.L.). A.M.R. acknowledges the seed funding provided by the R. A. Bowen Endowed Professorship funds at Clemson University.

Author information

Authors and Affiliations

Authors

Contributions

B.L. conceived the project, and directed and supervised the work. X.Y. conducted the experiments and data analysis. H.F. conducted the DFT calculations and MD simulations. Y.Z. helped with XPS test. B.L. and X.Y. analysed the results and drafted the manuscript with H.F., A.M.R., Y.Z., J.Z. and C.W. All authors discussed and co-wrote the manuscript.

Corresponding author

Correspondence to Bingan Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Tomooki Hosaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–6, Videos 1–4 and References.

Reporting Summary

Supplementary Video 1

Fire-dousing test of spraying 1 M KFSI DME electrolyte onto an ignited candle to check the fire-extinguishing effect.

Supplementary Video 2

Fire-dousing test of spraying pure air onto an ignited candle to check the fire-extinguishing effect.

Supplementary Video 3

Fire-dousing test of spraying water onto an ignited candle to check the fire-extinguishing effect.

Supplementary Video 4

Fire-dousing test of spraying 1 M KFSI DME/MME-OOE electrolyte onto an ignited candle to check the fire-extinguishing effect.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Fu, H., Rao, A.M. et al. Safe electrolyte for long-cycling alkali-ion batteries. Nat Sustain 7, 326–337 (2024). https://doi.org/10.1038/s41893-024-01275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01275-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing