Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent

Abstract

Produced from plant renewable resources, cellulose nanofibres are an emerging class of sustainable materials with favourable mechanical properties. Once carboxylated, they can be used even more widely thanks to the possibility of surface chemical modifications. However, the current fabrication processes for carboxylated cellulose nanofibres (C-CNFs) either require harsh reaction conditions or severely impair the high aspect ratio of products, resulting in low yields, environmental impacts and poor practical value. Here we address these limitations by using a hydrated multi-carboxylic acid deep eutectic solvent comprised of only choline chloride, citric acid and water to produce ultrafine and fairly long C-CNFs. The resultant C-CNFs possess fine diameters of ~3.4 nm, high aspect ratios up to 2,500, a high carboxyl content of 1.5 mmol g−1 and a high mass yield of 90.12%. Superior stability of the C-CNFs suspensions even at high concentrations allows for easy storage, transportation, processing and utilization. Moreover, the solvent exhibits a tenfold increase in its reusability, thereby highlighting its recyclability and economic viability. We further show large-scale production of C-CNFs for preparing large-area, high-performance structural materials. These unique advantages open a new avenue to the production of functional C-CNFs at an industry compatible scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication mechanism and advantages of this method.
Fig. 2: Morphological features of CNFs and C-CNFs.
Fig. 3: Depictions of the chemical structures of CNFs and C-CNFs.
Fig. 4: Large-scale preparation of C-CNFs and efficient reuse of H-DES.
Fig. 5: Economic efficacy and environmental impact of C-CNFs production.
Fig. 6: Physical and mechanical properties of C-CNF-derived materials.

Similar content being viewed by others

Data availability

The data supporting the findings are provided within this article and its Supplementary Information and are available from the corresponding authors on reasonable request.

References

  1. Tardy, B. L. et al. Advancing bio-based materials for sustainable solutions to food packaging. Nat. Sustain. 6, 360–367 (2023).

    Article  Google Scholar 

  2. Ling, S., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guan, Q. F. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 6, eaaz1114 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Li, Z. et al. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 5, 235–244 (2022).

    Article  Google Scholar 

  5. Fang, Z. et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter 2, 1000–1014 (2020).

    Article  Google Scholar 

  6. Cheng, W. et al. Sustainable cellulose and its derivatives for promising biomedical applications. Prog. Mater. Sci. 138, 101152 (2023).

    Article  CAS  Google Scholar 

  7. Jiang, G. et al. A scalable bacterial cellulose ionogel for multisensory electronic skin. Research 2022, 9814767 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su, Z. et al. Designed biomass materials for ‘green’ electronics: a review of materials, fabrications, devices, and perspectives. Prog. Mater. Sci. 125, 100917 (2022).

    Article  CAS  Google Scholar 

  9. Wang, R., Chen, L., Zhu, J. Y. & Yang, R. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3, 328–335 (2017).

    Article  CAS  Google Scholar 

  10. Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green. Chem. 18, 3835–3843 (2016).

    Article  CAS  Google Scholar 

  11. Isogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 86, 122–148 (2018).

    Article  CAS  Google Scholar 

  12. Meng, J. et al. Recyclable nanocellulose-confined palladium nanoparticles with enhanced room-temperature catalytic activity and chemoselectivity. Sci. China Mater. 64, 621–630 (2021).

    Article  CAS  Google Scholar 

  13. Chu, Y., Sun, Y., Wu, W. & Xiao, H. Dispersion properties of nanocellulose: a review. Carbohydr. Polym. 250, 116892 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, B. et al. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem. Rev. 118, 11575–11625 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Tsuchiya, H. et al. Cellulose nanofiber composite polymeric materials with reversible and movable cross-links and evaluation of their mechanical properties. ACS Appl. Polym. Mater. 4, 403–412 (2021).

    Article  Google Scholar 

  17. Beaumont, M. et al. Assembling native elementary cellulose nanofibrils via a reversible and regioselective surface functionalization. J. Am. Chem. Soc. 143, 17040–17046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ji, H. et al. Strategy towards one-step preparation of carboxylic cellulose nanocrystals and nanofibrils with high yield, carboxylation and highly stable dispersibility using innocuous citric acid. Green Chem. 21, 1956–1964 (2019).

    Article  CAS  Google Scholar 

  19. Spinella, S. et al. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain. Chem. Eng. 4, 1538–1550 (2016).

    Article  CAS  Google Scholar 

  20. Cui, X., Honda, T., Asoh, T.-A. & Uyama, H. Cellulose modified by citric acid reinforced polypropylene resin as fillers. Carbohydr. Polym. 230, 115662 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, C. Q. & Wang, X. Formation of five-membered cyclic anhydride intermediates by polycarboxylic acids: thermal analysis and Fourier transform infrared spectroscopy. J. Appl. Polym. Sci. 70, 2711–2718 (1998).

    Article  CAS  Google Scholar 

  22. Shinoda, R., Saito, T., Okita, Y. & Isogai, A. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13, 842–849 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, L. et al. Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12, 4462–4468 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Rietzler, B. & Ek, M. Adding value to spruce bark by the isolation of nanocellulose in a biorefinery concept. ACS Sustain. Chem. Eng. 9, 1398–1405 (2021).

    Article  CAS  Google Scholar 

  26. Li, D., Henschen, J. & Ek, M. Esterification and hydrolysis of cellulose using oxalic acid dihydrate in a solvent-free reaction suitable for preparation of surface-functionalised cellulose nanocrystals with high yield. Green Chem. 19, 5564–5567 (2017).

    Article  CAS  Google Scholar 

  27. Bian, H. et al. Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance. ACS Sustain. Chem. Eng. 7, 20022–20031 (2019).

    Article  CAS  Google Scholar 

  28. Luo, Y. et al. Preliminary investigations of the mechanisms involved in the ultrasonication-assisted production of carboxylic cellulose nanocrystals with different structural carboxylic acids. ACS Sustain. Chem. Eng. 9, 4531–4542 (2021).

    Article  CAS  Google Scholar 

  29. Saini, A. et al. Mixed-acid-assisted hydrothermal process for simultaneous preparation and carboxylation of needle-shaped cellulose nanocrystals. ACS Appl. Polym. Mater. 2, 548–562 (2019).

    Article  Google Scholar 

  30. Yu, H., Abdalkarim, S. Y. H., Zhang, H., Wang, C. & Tam, K. C. Simple process to produce high-yield cellulose nanocrystals using recyclable citric/hydrochloric acids. ACS Sustain. Chem. Eng. 7, 4912–4923 (2019).

    Article  CAS  Google Scholar 

  31. Yu, H.-Y., Zhang, D.-Z., Lu, F.-F. & Yao, J. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain. Chem. Eng. 4, 2632–2643 (2016).

    Article  CAS  Google Scholar 

  32. Jiang, J. et al. High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustain. Chem. Eng. 8, 7182–7191 (2020).

    Article  CAS  Google Scholar 

  33. Sirvio, J. A., Visanko, M. & Liimatainen, H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17, 3025–3032 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Ji, Q., Yu, X., Yagoub, A. E.-G. A., Chen, L. & Zhou, C. Efficient cleavage of strong hydrogen bonds in sugarcane bagasse by ternary acidic deep eutectic solvent and ultrasonication to facile fabrication of cellulose nanofibers. Cellulose 28, 6159–6182 (2021).

    Article  CAS  Google Scholar 

  35. Sehaqui, H., Kulasinski, K., Pfenninger, N., Zimmermann, T. & Tingaut, P. Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromolecules 18, 242–248 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Song, Y. et al. An energy-efficient one-pot swelling/esterification method to prepare cellulose nanofibers with uniform diameter. ChemSusChem 11, 3714–3718 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Khanjanzadeh, H. & Park, B.-D. Optimum oxidation for direct and efficient extraction of carboxylated cellulose nanocrystals from recycled MDF fibers by ammonium persulfate. Carbohydr. Polym. 251, 117029 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Saito, T., Nishiyama, Y., Putaux, J.-L., Vignon, M. & Isogai, A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687–1691 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Beaumont, M. et al. Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water. Nat. Commun. 12, 2513 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fang, Z. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett. 14, 765–773 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Fang, Z. et al. Highly transparent paper with tunable haze for green electronics. Energy Environ. Sci. 7, 3313–3319 (2014).

    Article  CAS  Google Scholar 

  42. Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).

    Article  ADS  PubMed  Google Scholar 

  43. Shi, M. et al. Transparent and flexible structurally colored biological nanofiber films for visual gas detection. Matter 5, 2813–2828 (2022).

    Article  CAS  Google Scholar 

  44. Zhu, Y. et al. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly. Nat. Synth. 2, 864–872 (2023).

    Article  ADS  Google Scholar 

  45. Zhu, H. et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.Y. thanks the generous support by the National Science Fund for Distinguished Young Scholars of China (H.Y.; grant number 31925028) and the Fundamental Research Funds for the Central Universities (H.Y.; grant number 2572023CT04). Z.W. and S.L. thank China Scholarship Council for the financial support for PhD study.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and K.Z. conceived the concept. X.S. and Z.W. performed most of the experiments. X.S., Z.W., H.Y. and K.Z. co-wrote the paper. S.L., Q.X., Y.L., W.C. and K.Z. participated in analysis of the results. All authors contributed to the general discussion and reviewing of the paper.

Corresponding authors

Correspondence to Haipeng Yu or Kai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Haishun Du, Zhiqiang Fang, Akira Isogai, Junyong Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46, Tables 1–6 and Movies 1–4.

Reporting Summary

Supplementary Video 1

Pilot-scale production of C-CNFs.

Supplementary Video 2

Suspension of C-CNFs with high solids content.

Supplementary Video 3

Fabrication of a large-area C-CNF film.

Supplementary Video 4

The recyclability and reusability of C-CNFs products.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Wang, Z., Liu, S. et al. Scalable production of carboxylated cellulose nanofibres using a green and recyclable solvent. Nat Sustain 7, 315–325 (2024). https://doi.org/10.1038/s41893-024-01267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01267-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing