Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast-charge high-voltage layered cathodes for sodium-ion batteries

Abstract

Sodium-ion batteries have not only garnered substantial attention for grid-scale energy storage owing to the higher abundance of sodium compared with lithium, but also present the possibility of fast charging because of the inherently higher sodium-ion mobility. However, it remains a phenomenal challenge to achieve a combination of these merits, given the complex structural chemistry of sodium-ion oxide materials. Here we show that O3-type sodium-ion layered cathodes (for example, Na5/6Li2/27Ni8/27Mn11/27Ti6/27O2) have the potential to attain high power density, high energy density (260 Wh kg−1 at the electrode level) and long cycle life (capacity retention of 80% over 700 cycles in full cells). The design involves introduction of characteristic P3-structural motifs into an O3-type framework that serves to promote sodium-ion diffusivity and address detrimental transition metal migration and phase transition at a high state of charge. This study provides a principle for the rational design of sodium-ion layered oxide electrodes and advances the understanding of the composition–structure–property relationships of oxide cathode materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Designing O3-type layered oxides.
Fig. 2: Electrochemical performance.
Fig. 3: Charge compensation mechanism and structural evolution upon cycling.
Fig. 4: Categorization of phase transitions in O3-type Na-ion layered cathodes.
Fig. 5: Cationic potential phase map indicating the phase transformation mechanisms of O3-type Na-ion layered cathodes.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the study are available from the corresponding authors on reasonable request.

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Kubota, K., Kumakura, S., Yoda, Y., Kuroki, K. & Komaba, S. Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Adv. Energy Mater. 8, 1703415 (2018).

    Article  Google Scholar 

  4. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  5. Fouassier, C., Delmas, C. & Hagenmuller, P. Evolution structurale et proprietes physiques des phases AxMO2 (A = Na, K; M = Cr, Mn, Co) (x≤1). Mater. Res. Bull. 10, 443–449 (1975).

    Article  CAS  Google Scholar 

  6. Talaie, E., Duffort, V., Smith, H. L., Fultz, B. & Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3-z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 8, 2512–2523 (2015).

    Article  CAS  Google Scholar 

  7. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).

    Article  CAS  Google Scholar 

  9. Okoshi, M., Yamada, Y., Yamada, A. & Nakai, H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J. Electrochem. Soc. 160, A2160–A2165 (2013).

    Article  CAS  Google Scholar 

  10. Barthel, E. R., Martini, I. B. & Schwartz, B. J. How does the solvent control electron transfer? Experimental and theoretical studies of the simplest charge transfer reaction. J. Phys. Chem. B 105, 12230–12241 (2001).

    Article  CAS  Google Scholar 

  11. Kuratani, K., Uemura, N., Senoh, H., Takeshita, H. T. & Kiyobayashi, T. Conductivity, viscosity and density of MClO4 (M = Li and Na) dissolved in propylene carbonate and γ-butyrolactone at high concentrations. J. Power Sources 223, 175–182 (2013).

    Article  CAS  Google Scholar 

  12. Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015).

    Article  Google Scholar 

  13. Zhao, C. et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 142, 5742–5750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, C. et al. Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode. Chem 5, 2913–2925 (2019).

    Article  CAS  Google Scholar 

  15. Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y.-S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).

    Article  CAS  Google Scholar 

  16. Kubota, K. et al. Impact of Mg and Ti doping in O3 type NaNi1/2Mn1/2O2 on reversibility and phase transition during electrochemical Na intercalation. J. Mater. Chem. A 9, 12830–12844 (2021).

    Article  CAS  Google Scholar 

  17. Han, M. H., Gonzalo, E., Casas-Cabanas, M. & Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 258, 266–271 (2014).

    Article  ADS  CAS  Google Scholar 

  18. Ding, F. et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Mater. 30, 420–430 (2020).

    Article  Google Scholar 

  19. Mortemard de Boisse, B., Carlier, D., Guignard, M., Bourgeois, L. & Delmas, C. P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: structural changes induced by the electrochemical (de)intercalation process. Inorg. Chem. 53, 11197–11205 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, C., Avdeev, M., Chen, L. & Hu, Y.-S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew. Chem. Int. Ed. 57, 7056–7060 (2018).

    Article  CAS  Google Scholar 

  21. Wang, Q. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Berthelot, R., Carlier, D. & Delmas, C. Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat. Mater. 10, 74–80 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ding, F. et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, P.-F. et al. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3−P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 29, 1700210 (2017).

    Article  Google Scholar 

  25. Mu, L. et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 27, 6928–6933 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Oh, S.-M. et al. High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem. Mater. 26, 6165–6171 (2014).

    Article  CAS  Google Scholar 

  27. You, Y. et al. Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries. Chem 4, 2124–2139 (2018).

    Article  CAS  Google Scholar 

  28. Yu, H., Guo, S., Zhu, Y., Ishida, M. & Zhou, H. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem. Commun. 50, 457–459 (2014).

    Article  CAS  Google Scholar 

  29. Delmas, C., Braconnier, J.-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 3–4, 165–169 (1981).

    Article  Google Scholar 

  30. Xie, Y. et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv. Energy Mater. 6, 1601306 (2016).

    Article  Google Scholar 

  31. Wang, Q. et al. Reaching the energy density limit of layered O3-NaNi0.5Mn0.5O2 electrodes via dual Cu and Ti substitution. Adv. Energy Mater. 9, 1901785 (2019).

    Article  ADS  Google Scholar 

  32. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Dai, K. et al. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. Joule 3, 518–541 (2019).

    Article  CAS  Google Scholar 

  34. Voronina, N., Kim, H. J., Shin, M. & Myung, S.-T. Rational design of Co-free layered cathode material for sodium-ion batteries. J. Power Sources 514, 230581 (2021).

    Article  CAS  Google Scholar 

  35. Wang, H. et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J. Electrochem. Soc. 163, A565–A570 (2016).

    Article  CAS  Google Scholar 

  36. Zhou, Y.-N. et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. J. Mater. Chem. A 1, 11130–11134 (2013).

    Article  CAS  Google Scholar 

  37. Lee, E. et al. New Insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem. Mater. 27, 6755–6764 (2015).

    Article  ADS  CAS  Google Scholar 

  38. Susanto, D. et al. Anionic redox activity as a key factor in the performance degradation of NaFeO2 cathodes for sodium ion batteries. Chem. Mater. 31, 3644–3651 (2019).

    Article  CAS  Google Scholar 

  39. Vassilaras, P. et al. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. J. Mater. Chem. A 5, 4596–4606 (2017).

    Article  CAS  Google Scholar 

  40. Maletti, S., Sarapulova, A., Schökel, A. & Mikhailova, D. Operando studies on the NaNi0.5Ti0.5O2 cathode for Na-ion batteries: elucidating titanium as a structure stabilizer. ACS Appl. Mater. Interfaces 11, 33923–33930 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, P.-F. et al. An abnormal 3.7 volt O3-type sodium-ion battery cathode. Angew. Chem. Int. Ed. 57, 8178–8183 (2018).

    Article  ADS  CAS  Google Scholar 

  42. Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Zhao, C., Lu, Y., Chen, L. & Hu, Y.-S. Ni-based cathode materials for Na-ion batteries. Nano Res. 12, 2018–2030 (2019).

    Article  CAS  Google Scholar 

  44. Schulz, C. et al. Characterization of the soft X-ray spectrometer PEAXIS at BESSY II. J. Synchrotron Radiat. 27, 238–249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshida, H., Yabuuchi, N. & Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60–63 (2013).

    Article  CAS  Google Scholar 

  46. Yu, C.-Y. et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019–2026 (2015).

    Article  CAS  Google Scholar 

  47. Yue, J.-L. et al. A quinary layer transition metal oxide of NaNi1/4Co1/4Fe1/4Mn1/8Ti1/8O2 as a high-rate-capability and long-cycle-life cathode material for rechargeable sodium ion batteries. Chem. Commun. 51, 15712–15715 (2015).

    Article  CAS  Google Scholar 

  48. Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S. & Komaba, S. Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. J. Electrochem. Soc. 160, A3131–A3137 (2013).

    Article  CAS  Google Scholar 

  49. Vassilaras, P. et al. Communication–O3-type layered oxide with a quaternary transition metal composition for Na-ion battery cathodes: NaTi0.25Fe0.25Co0.25Ni0.25O2. J. Electrochem. Soc. 164, A3484–A3486 (2017).

    Article  CAS  Google Scholar 

  50. Hwang, J.-Y., Yu, T.-Y. & Sun, Y.-K. Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0.5]O2 cathode: facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A 6, 16854–16862 (2018).

    Article  CAS  Google Scholar 

  51. Song, J. et al. Controlling surface phase transition and chemical reactivity of O3-layered metal oxide cathodes for high-performance Na-ion batteries. ACS Energy Lett. 5, 1718–1725 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Netherlands Organization for Scientific Research (NWO) grant 16122 (M.W.). This research used 11-ID-C beamline at the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract grant DE-AC02-06CH11357 (J.L.). We also acknowledge the financial support from the National Natural Science Foundation of China grant 51991344 (X.B.) and the Chinese Academy of Sciences grant XDB33000000 (X.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.W. and Q.W. conceived the project. Q.W., D.Z., Z.Y. and C.Z. carried out the synthesis, material characterization and electrochemical measurements. H.G. collected the NPD data; L.W. and J.L. collected the SXRD data; and Q.W. and C.Z. interpreted the data. J.W. and X.B. performed the TEM measurement. D.Z., D.W. and G.S. collected and interpreted the XAS and RIXS data. All authors participated in discussing the results. Q.W., M.W., C.Z., J.L. and D.Z. prepared and revised the paper with inputs from all other authors.

Corresponding authors

Correspondence to Chenglong Zhao, Jun Lu or Marnix Wagemaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Huiwen Ji, Yong-Mook Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–22 and Tables 1–11.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhou, D., Zhao, C. et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries. Nat Sustain 7, 338–347 (2024). https://doi.org/10.1038/s41893-024-01266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01266-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing