Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bio-based nanofibre hydrogel filter for sustainable water purification

Abstract

Removal of suspended solids (SS) is a prerequisite for delivering clean water. However, removal of ultrafine SS during water purification in a cost-effective manner remains a global challenge. Here we develop an injection-driven filter system that integrates a fully bio-based biodegradable nanofibre hydrogel film with a syringe to remove ultrafine SS for portable and sustainable water purification. The hydrogel film features a densely stacked and entangled nanofibre network, enabling it to reject ultrafine SS with a cut-off size of 10 nm at a 100% rejection efficiency, greatly surpassing commercial filter papers and microporous membranes. During operation, the flux of the injection-driven filter system reaches 90.6 g cm−2 h−1, which is 7.2 times higher than that of commercial polycarbonate ultrafiltration membrane operated under the same conditions. Moreover, this filter system demonstrates good scalability and reusability, with low cost and reduced environmental footprint. The versatility of this filter system is further proven by successful clean water production from various difficult-to-purify water resources, including muddy water, river water, dirty water from melted snow and nanoplastic-contaminated water. Overall, this work provides a facile yet cost-effective tool for sustainable water purification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Features of BNHFs in filtering SS-contaminated water.
Fig. 2: Assembly of the BNHF system.
Fig. 3: SS rejection.
Fig. 4: Application of BNHF in practice.
Fig. 5: Particle recycling, biodegradation and value comparison.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Source data are provided with this paper.

References

  1. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    PubMed  ADS  Google Scholar 

  2. Zhou, X., Guo, Y., Zhao, F. & Yu, G. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 52, 3244–3253 (2019).

    CAS  PubMed  Google Scholar 

  3. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    ADS  Google Scholar 

  4. Johnson, N., Revenga, C. & Echeverria, J. Managing water for people and nature. Science 292, 1071–1072 (2001).

    CAS  PubMed  Google Scholar 

  5. Sadoff, C. W., Borgomeo, E. & Uhlenbrook, S. Rethinking water for SDG 6. Nat. Sustain. 3, 346–347 (2020).

    Google Scholar 

  6. Sachs, J. D. et al. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2, 805–814 (2019).

    Google Scholar 

  7. Jin, M. et al. Underwater oil capture by a three‐dimensional network architectured organosilane surface. Adv. Mater. 23, 2861–2864 (2011).

    CAS  PubMed  Google Scholar 

  8. Lu, F. & Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev. 408, 213180 (2020).

    CAS  Google Scholar 

  9. Barac, T. et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat. Biotechnol. 22, 583–588 (2004).

    CAS  PubMed  Google Scholar 

  10. Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).

    CAS  PubMed  ADS  Google Scholar 

  11. Zhou, J., Hung, Y.-C. & Xie, X. Making waves: pathogen inactivation by electric field treatment: from liquid food to drinking water. Water Res. 207, 117817 (2021).

    CAS  PubMed  Google Scholar 

  12. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  PubMed  ADS  Google Scholar 

  13. Zhou, J., Yang, F., Huang, Y., Ding, W. & Xie, X. Smartphone-powered efficient water disinfection at the point of use. npj Clean Water 3, 40 (2020).

    CAS  Google Scholar 

  14. Woodward, J., Li, J., Rothwell, J. & Hurley, R. Acute riverine microplastic contamination due to avoidable releases of untreated wastewater. Nat. Sustain. 4, 793–802 (2021).

    Google Scholar 

  15. Vethaak, A. D. & Legler, J. Microplastics and human health. Science 371, 672–674 (2021).

    CAS  PubMed  ADS  Google Scholar 

  16. Ali, I. & Gupta, V. Advances in water treatment by adsorption technology. Nat. Protoc. 1, 2661–2667 (2006).

    CAS  PubMed  Google Scholar 

  17. Wang, T., Yu, C. & Xie, X. Microfluidics for environmental applications. Microfluidics Biotechnol. 179, 267–290 (2020).

    Google Scholar 

  18. Luo, L. & Nguyen, A. V. A review of principles and applications of magnetic flocculation to separate ultrafine magnetic particles. Sep. Purif. Technol. 172, 85–99 (2017).

    CAS  Google Scholar 

  19. Akbulut, O. et al. Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett. 12, 4060–4064 (2012).

    CAS  PubMed  ADS  Google Scholar 

  20. Liang, H. W. et al. Robust and highly efficient free‐standing carbonaceous nanofiber membranes for water purification. Adv. Funct. Mater. 21, 3851–3858 (2011).

    CAS  Google Scholar 

  21. Metreveli, G. et al. A size‐exclusion nanocellulose filter paper for virus removal. Adv. Healthc. Mater. 3, 1546–1550 (2014).

    CAS  PubMed  Google Scholar 

  22. An, A. K. et al. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. J. Membr. Sci. 525, 57–67 (2017).

    CAS  Google Scholar 

  23. Liu, T., Zhou, H., Graham, N., Yu, W. & Sun, K. 2D kaolin ultrafiltration membrane with ultrahigh flux for water purification. Water Res. 156, 425–433 (2019).

    CAS  PubMed  Google Scholar 

  24. Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS  Google Scholar 

  25. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011).

    CAS  PubMed  Google Scholar 

  26. Ling, S., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Huang, W., Ling, S., Li, C., Omenetto, F. G. & Kaplan, D. L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 47, 6486–6504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palika, A. et al. An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nat. Nanotechnol. 16, 918–925 (2021).

    CAS  PubMed  ADS  Google Scholar 

  29. Gustafsson, S. et al. Mille-feuille paper: a novel type of filter architecture for advanced virus separation applications. Mater. Horiz. 3, 320–327 (2016).

    CAS  Google Scholar 

  30. Gustafsson, S. & Mihranyan, A. Strategies for tailoring the pore-size distribution of virus retention filter papers. ACS Appl. Mater. Interfaces 8, 13759–13767 (2016).

    CAS  PubMed  Google Scholar 

  31. Wang, Y. et al. Wood‐derived nanofibrillated cellulose hydrogel filters for fast and efficient separation of nanoparticles. Adv. Sustain. Syst. 3, 1900063 (2019).

    Google Scholar 

  32. Ling, S., Jin, K., Kaplan, D. L. & Buehler, M. J. Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett. 16, 3795–3800 (2016).

    CAS  PubMed  ADS  Google Scholar 

  33. Ling, S. et al. Design and function of biomimetic multilayer water purification membranes. Sci. Adv. 3, e1601939 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  34. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    CAS  PubMed  ADS  Google Scholar 

  35. Zhang, Y.-Z. et al. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49, 7229–7251 (2020).

    CAS  PubMed  Google Scholar 

  36. Lei, C. et al. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed. 134, e202200271 (2022).

    ADS  Google Scholar 

  37. Wu, S. et al. Poly (vinyl alcohol) hydrogels with broad‐range tunable mechanical properties via the Hofmeister effect. Adv. Mater. 33, 2007829 (2021).

    CAS  Google Scholar 

  38. Su, L. et al. Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water. Science 377, 213–218 (2022).

    CAS  PubMed  ADS  Google Scholar 

  39. Zhang, Y.-Z. et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4, eaat0098 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  40. Wang, X. et al. Mechanical nonreciprocity in a uniform composite material. Science 380, 192–198 (2023).

    CAS  PubMed  ADS  Google Scholar 

  41. Kim, J. H., Lee, D., Lee, Y. H., Chen, W. & Lee, S. Y. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv. Mater. 31, 1804826 (2019).

    Google Scholar 

  42. Chen, W. et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47, 2837–2872 (2018).

    CAS  PubMed  ADS  Google Scholar 

  43. Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    CAS  PubMed  ADS  Google Scholar 

  44. Shen, S. et al. Computational design and manufacturing of sustainable materials through first-principles and materiomics. Chem. Rev. 123, 2242–2275 (2023).

    CAS  PubMed  Google Scholar 

  45. Ling, S. et al. Combining in silico design and biomimetic assembly: a new approach for developing high-performance dynamic responsive bio-nanomaterials. Adv. Mater. 30, 1802306 (2018).

    Google Scholar 

  46. Yu, C.-H., Qin, Z. & Buehler, M. J. Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. Nano Futures 3, 035001 (2019).

    CAS  ADS  Google Scholar 

  47. Guo, K., Yang, Z., Yu, C.-H. & Buehler, M. J. Artificial intelligence and machine learning in design of mechanical materials. Mater. Horiz. 8, 1153–1172 (2021).

    CAS  PubMed  Google Scholar 

  48. Chen, W. et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 83, 1804–1811 (2011).

    CAS  Google Scholar 

  49. Chen, W. et al. Comparative study of aerogels obtained from differently prepared nanocellulose fibers. ChemSusChem 7, 154–161 (2014).

    CAS  PubMed  Google Scholar 

  50. Ministry of Health of the People’s Republic of China & Standardization Administration of China. Standard examination methods for drinking water–microbiological parameters (GB/T 5750.12-2006). Standards Press of China https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D77E7ED3A7E05397BE0A0AB82A (2006).

  51. Ministry of Health of the People’s Republic of China & Standardization Administration of China. Standard examination methods for drinking water–organoleptic and physical parameters (GB/T 5750.4-2006). Standards Press of China https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7C731D3A7E05397BE0A0AB82A (2006).

  52. Ministry of Health of the People’s Republic of China & Standardization Administration of China. Standard examination methods for drinking water–aggregate organic parameters (GB/T 5750.7-2006). Standards Press of China https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7F6DBD3A7E05397BE0A0AB82A (2006).

  53. Ministry of Health of the People’s Republic of China & Standardization Administration of China. Standard examination methods for drinking water–nonmetal parameters (GB/T 5750.5-2006). Standards Press of China https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D75AC6D3A7E05397BE0A0AB82A (2006).

Download references

Acknowledgements

W.C. acknowledges support from the National Natural Science Foundation of China (No. 31922056) and the Fundamental Research Funds for the Central Universities (No. 2572021CG01). G.Y. acknowledges support from the Welch Foundation F-1861, Norman Hackerman Award in Chemical Research and Camille Dreyfus Teacher-Scholar Award.

Author information

Authors and Affiliations

Authors

Contributions

W.C. and G.Y. conceived the idea and directed the project. M.J. and C.J. performed most of the experiments. C.L. participated in most data and mechanism analysis. X.H. and Q.L. participated in the nanoparticle filtration experiments. Y.W., S. Ling and Y.Z. participated in the analysis of the filtration mechanism. H.Y., S. Liu and J.L. commented on the paper. W.C. and G.Y. wrote the paper. All authors agreed with the final version of the paper.

Corresponding authors

Correspondence to Wenshuai Chen or Guihua Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–30.

Reporting Summary

Supplementary Video 1

The appearance of a BNHF shows that it is a very convenient filter.

Supplementary Video 2

X-ray micro-CT investigation revealing the three-dimensional structure of HF-5-10 on a microporous membrane.

Source data

Source Data Fig. 3

Unprocessed UV–vis spectra data of the feed and filtrate of 3050 nm TiO2 nanoparticle water dispersion filtered through a microporous membrane or an HF-5-10 by manual pressure. Unprocessed UV–vis spectra data of the feed and filtrate of 2080 nm ATO nanoparticle water dispersion filtered through a G-HF-40-15 by manual pressure.

Source Data Fig. 4

Unprocessed UV–vis spectra data of the feed and filtrate of soil-contaminated water and dirty snow water filtered through an HF-5-10. Unprocessed UV–vis spectra data of two times filtration of 30 nm polystyrene nanoplastic water dispersions with different concentrations filtered through an HF-10-15. Unprocessed UV–vis spectra data of the feed and filtrate of dirty river water filtered through an HF-5-1000.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Jing, C., Lei, C. et al. A bio-based nanofibre hydrogel filter for sustainable water purification. Nat Sustain 7, 168–178 (2024). https://doi.org/10.1038/s41893-023-01264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01264-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research