Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical ammonia recovery and co-production of chemicals from manure wastewater

Abstract

Livestock manure wastewater, containing high level of ammonia, is a major source of water contamination, posing serious threats to aquatic ecosystems. Because ammonia is an important nitrogen fertilizer, efficiently recovering ammonia from manure wastewater would have multiple sustainability gains from both the pollution control and the resource recovery perspectives. Here we develop an electrochemical strategy to achieve this goal by using an ion-selective potassium nickel hexacyanoferrate (KNiHCF) electrode as a mediator. The KNiHCF electrode spontaneously oxidizes organic matter and uptakes ammonium ions (NH4+) and potassium ions (K+) in manure wastewater with a nutrient selectivity of 100%. Subsequently, nitrogen- and potassium-rich fertilizers are produced alongside the electrosynthesis of H2 (green fuel) or H2O2 (disinfectant) while regenerating the KNiHCF electrode. The preliminary techno-economic analysis indicates that the proposed strategy has notable economic potential and environmental benefits. This work provides a powerful strategy for efficient nutrient (NH4+ and K+) recovery and decentralized fertilizer and chemical production from manure wastewater, paving the way to sustainable agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the simultaneous ammonia recovery and electrochemical synthesis system using ammonium ion-selective RR.
Fig. 2: Structural and electrochemical characterizations of the KNiHCF material.
Fig. 3: NH4+ recovery from synthetic wastewater.
Fig. 4: NH4+ recovery from manure wastewater.
Fig. 5: Simultaneous NH4+ recovery and H2O2 production enabled by the KNiHCF RR.
Fig. 6: Reduction of daily ammonia emissions from manure with NH4+ recovery and the preliminary economic analysis at a modelled 1,000-lactating-cow dairy farm.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from https://datadryad.org/stash/share/cFZs-SiOoCr9vc0Bket78q_6o33JBEuo9Qb_IOT3f30. Source data are provided with this paper.

References

  1. Johnson, B. J. & Fuerniss, L. 114 What Is the impact of dairy influence cattle on the traditional beef industry structure? J. Anim. Sci. 99, 38–39 (2021).

    PubMed Central  Google Scholar 

  2. Lemaire, G., Franzluebbers, A., Carvalho, P. C. d. F. & Dedieu, B. Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 190, 4–8 (2014).

    Google Scholar 

  3. Factory Farm Nation: 2020 Edition (Food and Water Watch, 2020); https://www.foodandwaterwatch.org/insight/factory-farm-nation-2020-edition

  4. Horn, H. H. V., Wilkie, A. C., Powers, W. J. & Nordstedt, R. A. Components of dairy manure management systems. J. Dairy Sci. 77, 2008–2030 (1994).

    PubMed  Google Scholar 

  5. Guidelines for Water Reuse (US EPA, 2004).

  6. IPCC Climate Change 2007: Synthesis Report (eds Bernstein, L. et al.) (IPCC, 2008).

  7. Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycling Agroecosyst. 52, 225–248 (1998).

    CAS  Google Scholar 

  8. Böhlke, J., Wanty, R., Tuttle, M., Delin, G. & Landon, M. Denitrification in the recharge area and discharge area of a transient agricultural nitrate plume in a glacial outwash sand aquifer, Minnesota. Water Resour. Res. 38, 10-1–10-26 (2002).

  9. Burton C. H. & Turner C. Manure Management: Treatment Strategies for Sustainable Agriculture Editions Quae (Silsoe Research Institute, 2003).

  10. Oenema, O., Oudendag, D. & Velthof, G. L. Nutrient losses from manure management in the European Union. Livest. Sci. 112, 261–272 (2007).

    Google Scholar 

  11. Aguirre-Villegas, H. A. & Larson, R. A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 143, 169–179 (2017).

    CAS  Google Scholar 

  12. Fang, C. et al. Energy and nutrient recovery from sewage sludge and manure via anaerobic digestion with hydrothermal pretreatment. Environ. Sci. Technol. 54, 1147–1156 (2019).

    PubMed  ADS  Google Scholar 

  13. Pandey, B. & Chen, L. Technologies to recover nitrogen from livestock manure—a review. Sci. Total Environ. 784, 147098 (2021).

    CAS  PubMed  ADS  Google Scholar 

  14. Tarpeh, W. A. & Chen, X. Making wastewater obsolete: selective separations to enable circular water treatment. Environ. Sci. Ecotechnol. 5, 100078 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun, M. et al. Electrochemical–osmotic process for simultaneous recovery of electric energy, water, and metals from wastewater. Environ. Sci. Technol. 54, 8430–8442 (2020).

    CAS  PubMed  ADS  Google Scholar 

  16. Qin, M. & He, Z. Self-supplied ammonium bicarbonate draw solute for achieving wastewater treatment and recovery in a microbial electrolysis cell-forward osmosis-coupled system. Environ. Sci. Tech. Let. 1, 437–441 (2014).

    CAS  Google Scholar 

  17. Kuntke, P. et al. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 46, 2627–2636 (2012).

    CAS  PubMed  Google Scholar 

  18. Qin, M., Molitor, H., Brazil, B., Novak, J. T. & He, Z. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system. Bioresour. Technol. 200, 485–492 (2016).

    CAS  PubMed  Google Scholar 

  19. Tarpeh, W. A., Barazesh, J. M., Cath, T. Y. & Nelson, K. L. Electrochemical stripping to recover nitrogen from source-separated urine. Environ. Sci. Technol. 52, 1453–1460 (2018).

    CAS  PubMed  ADS  Google Scholar 

  20. Li, Y. et al. Bipolar membrane electrodialysis for ammonia recovery from synthetic urine: experiments, modeling, and performance analysis. Environ. Sci. Technol. 55, 14886–14896 (2021).

    CAS  PubMed  ADS  Google Scholar 

  21. Yang, K. & Qin, M. The application of cation exchange membranes in electrochemical systems for ammonia recovery from wastewater. Membranes 11, 494 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kuntke, P. et al. Hydrogen gas recycling for energy efficient ammonia recovery in electrochemical systems. Environ. Sci. Technol. 51, 3110–3116 (2017).

    CAS  PubMed  ADS  Google Scholar 

  23. Gao, R., Bonin, L., Arroyo, J. M. C., Logan, B. E. & Rabaey, K. Separation and recovery of ammonium from industrial wastewater containing methanol using copper hexacyanoferrate (CuHCF) electrodes. Water Res. 188, 116532 (2021).

    CAS  PubMed  Google Scholar 

  24. Kim, T., Gorski, C. A. & Logan, B. E. Ammonium removal from domestic wastewater using selective battery electrodes. Environ. Sci. Tech. Let. 5, 578–583 (2018).

    CAS  Google Scholar 

  25. Son, M. et al. Stepwise ammonium enrichment using selective battery electrodes. Environ. Sci. Water Res. Technol. 6, 1649–1657 (2020).

    CAS  Google Scholar 

  26. Jang, Y., Hou, C.-H., Kwon, K., Kang, J. S. & Chung, E. Selective recovery of lithium and ammonium from spent lithium-ion batteries using intercalation electrodes. Chemosphere 317, 137865 (2023).

    CAS  PubMed  Google Scholar 

  27. Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M. & Smith, K. C. Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta 255, 369–378 (2017).

    CAS  Google Scholar 

  28. Wang, F. et al. Modular electrochemical synthesis using a redox reservoir paired with independent half-reactions. Joule 5, 149–165 (2021).

    CAS  Google Scholar 

  29. Chen, L., Dong, X., Wang, Y. & Xia, Y. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Landman, A. et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16, 646–651 (2017).

    CAS  PubMed  ADS  Google Scholar 

  31. Symes, M. D. & Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013).

    CAS  PubMed  Google Scholar 

  32. Wang, R. et al. Sustainable coproduction of two disinfectants via hydroxide-balanced modular electrochemical synthesis using a redox reservoir. ACS Cent. Sci. 7, 2083–2091 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Michael, K. H. et al. Pairing of aqueous and nonaqueous electrosynthetic reactions enabled by a redox reservoir electrode. J. Am. Chem. Soc. 144, 22641–22650 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2020).

    ADS  Google Scholar 

  35. Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Rassat, S. D., Sukamto, J. H., Orth, R. J., Lilga, M. A. & Hallen, R. T. Development of an electrically switched ion exchange process for selective ion separations. Sep. Purif. Technol. 15, 207–222 (1999).

    CAS  Google Scholar 

  37. Dong, S. et al. Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5. Chem 5, 1537–1551 (2019).

  38. Liang, G. et al. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 32, 1907802 (2020).

    CAS  Google Scholar 

  39. Wessells, C. D., Peddada, S. V., Huggins, R. A. & Cui, Y. Nickel hexacyanoferrate Nnanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011).

    CAS  PubMed  ADS  Google Scholar 

  40. Wu, X. et al. Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system. Angew. Chem. Int. Ed. 56, 13026–13030 (2017).

    CAS  Google Scholar 

  41. Shi, L. et al. Metal-ion depletion impacts the stability and performance of battery electrode deionization over multiple cycles. Environ. Sci. Technol. 55, 5412–5421 (2021).

    CAS  PubMed  ADS  Google Scholar 

  42. Liu, C. et al. Lithium extraction from seawater through pulsed electrochemical intercalation. Joule 4, 1459–1469 (2020).

    CAS  Google Scholar 

  43. Qin, M., Liu, Y., Luo, S., Qiao, R. & He, Z. Integrated experimental and modeling evaluation of energy consumption for ammonia recovery in bioelectrochemical systems. Chem. Eng. J. 327, 924–931 (2017).

    CAS  Google Scholar 

  44. Sheng, H., Ross, R. D., Schmidt, J. R. & Jin, S. Metal-compound-based electrocatalysts for hydrogen peroxide electrosynthesis and the electro-Fenton process. ACS Energy Lett. 8, 196–212 (2022).

    ADS  Google Scholar 

  45. Yang, S. et al. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018).

    CAS  Google Scholar 

  46. Jiang, K. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat. Commun. 10, 3997 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  47. Raven, J. A. Chloride: essential micronutrient and multifunctional beneficial ion. J. Exp. Bot. 68, 359–367 (2017).

    CAS  Google Scholar 

  48. Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation (NSF, CBET- 2219089). We acknowledge the facilities and instrumentation at the UW–Madison Wisconsin Centers for Nanoscale Technology (wcnt.wisc.edu), partially supported by the NSF through the University of Wisconsin Materials Research Science and Engineering Center (number DMR-1720415). We thank J. Lazarcik for help with access to the IC and ICP-OES instruments supported by the Water Science and Engineering Laboratory at UW–Madison. We thank X. Zou for help with the graphic design of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

R.W. and S.J. designed the experiments. R.W. carried out materials synthesis, materials characterization, electrochemical measurements, ammonium recovery and electrochemical production measurements and analysis of manure wastewater with the help of K.Y. K.Y. and M.Q. prepared manure wastewater. C.W. and F.B. conducted the techno-economic analysis. H.A.-V. and R.L. modelled the ammonia emissions reductions. M.Q. and S.J. supervised the project. R.W., M.Q. and S.J. wrote the paper, and all the authors commented on it.

Corresponding authors

Correspondence to Mohan Qin or Song Jin.

Ethics declarations

Competing interests

A provisional patent based on this work has been filed by R.W. and S.J. The other authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Taeyoung Kim, Philipp Kuntke and Zhiguo Yuan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–52, Tables 1–16 and Notes 1–6.

Reporting Summary

Source data

Source Data Fig. 2

Electrochemical results.

Source Data Fig. 3

Electrochemical results and production detections.

Source Data Fig. 4

Electrochemical results and production detections.

Source Data Fig. 5

Electrochemical results and production detections.

Source Data Fig. 6

Analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yang, K., Wong, C. et al. Electrochemical ammonia recovery and co-production of chemicals from manure wastewater. Nat Sustain 7, 179–190 (2024). https://doi.org/10.1038/s41893-023-01252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01252-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing