Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Supplying ecosystem services on US rangelands

Abstract

Rangelands comprise 40% of the conterminous United States and they supply essential ecosystem services to society. A scenario assessment was conducted to determine how accelerating biophysical and societal drivers may modify their future availability. Four scenarios emerged: two may maintain rural communities by sustaining the prevailing ecosystem service of beef cattle production, and two may transform rural communities through expansion of renewable energy technologies and infusion of external capital from amenity land sales. Collaborative organizations representing diverse societal sectors may most effectively identify and manage trade-offs among ecosystem service availability, and equitably prioritize food and energy security, environmental quality and cultural identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Change in evapotranspiration in the western United States.
Fig. 2: Plausible future scenarios for US rangeland.

Similar content being viewed by others

References

  1. Briske, D. D. (ed.) Rangeland Systems: Processes, Management and Challenges (Springer Open, 2017).

  2. Havstad, K. M. et al. Ecological services to and from rangelands of the United States. Ecol. Econ. 64, 261–268 (2007).

    Google Scholar 

  3. Millennium Ecosystem Assessment Ecosystems and Human Well-being (Island Press, 2005).

  4. Yahdjian, L., Sala, O. E. & Havstad, K. M. Rangeland ecosystem services: shifting focus from supply to reconciling supply and demand. Front. Ecol. Environ. 13, 44–51 (2015).

    Google Scholar 

  5. Peterson, G. D., Cumming, G. S. & Carpenter, S. R. Scenario planning: a tool for conservation in an uncertain world. Conserv. Biol. 17, 358–366 (2003).

    Google Scholar 

  6. Henrichs, T. et al. in Ecosystems and Human Well-Being (eds Ash, N. et al.) 151–215 (Island Press, 2010).

  7. Wuebbles, D. J. et al. (eds) Climate Science Special Report: Fourth National Climate Assessment Vol. I (US Global Change Research Program, 2017).

  8. Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    Google Scholar 

  9. Senay, G. B., Kagone, S. & Velpuri, N. M. Operational global actual evapotranspiration: development, evaluation, and dissemination. Sensors 20, 1915 (2020).

    Google Scholar 

  10. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).

    Google Scholar 

  11. Nagler, P. L. et al. Two decades of changes in vegetation greenness and water use in the riparian corridor of the Colorado River Delta. Hydrol. Process. 34, 4851–4883 (2020).

    Google Scholar 

  12. Klemm, T., Briske, D. D. & Reeves, M. C. Vulnerability of rangeland beef cattle production to climate-induced NPP fluctuations in the US Great Plains. Glob. Change Biol. 26, 4841–4853 (2020).

    Google Scholar 

  13. Abatzoglou, J. T. et al. Projected increases in western US forest fire despite growing fuel constraints. Commun. Earth Environ. 2, 227 (2021).

    Google Scholar 

  14. Li, Z., Angerer, J. P. & Wu, X. B. Temporal patterns of large wildfires and their burn severity in rangelands of western United States. Geophys. Res. Lett. 48, e202GL091636 (2021).

    Google Scholar 

  15. Smith, J. T. et al. The elevational ascent and spread of exotic annual grass dominance in the Great Basin, USA. Divers. Distrib. 28, 83–96 (2022).

    Google Scholar 

  16. Gosnell, H. & Abrams, J. Amenity migration: diverse conceptualizations of drivers, socioeconomic dimensions, and emerging challenges. GeoJournal 76, 303–322 (2009).

    Google Scholar 

  17. Burow, P. B., McConnell, K. & Farrell, J. Social scientific research on the American West: current debates, novel methods, and new directions. Environ. Res. Lett. 14, 125012 (2019).

    Google Scholar 

  18. Gosnell, H., Haggerty, J. H. & Travis, W. R. Ranchland ownership change in the Greater Yellowstone Ecosystem, 1990–2001: implications for conservation. Soc. Nat. Resour. 19, 743–758 (2006).

    Google Scholar 

  19. Brunson, M. W. & Huntsinger, L. Ranching as a conservation strategy: can old ranchers save the new west? Rangel. Ecol. Manag. 61, 137–147 (2008).

    Google Scholar 

  20. Haggerty, J. H., Epstein, K., Gosnell, H., Rose, J. & Stone, M. Rural land concentration & protected areas: recent trends from Montana and Greater Yellowstone. Soc. Nat. Resour. 35, 692–700 (2022).

    Google Scholar 

  21. Epstein, K., Haggerty, J. H. & Gosnell, H. With, not for money: ranch management trajectories of the super-rich in Greater Yellowstone. Ann. Am. Assoc. Geogr. 112, 432–448 (2022).

    Google Scholar 

  22. Moran, D. & Blair, K. J. Sustainable livestock systems: anticipating demand-side challenges. Animal 15, 100288 (2021).

    Google Scholar 

  23. Eshel, G. A model for ‘sustainable’ US beef production. Nat. Ecol. Evol. 2, 81–85 (2018).

    Google Scholar 

  24. Hayek, M. N. & Garrett, R. D. Nationwide shift to grass-fed beef requires larger cattle population. Environ. Res. Lett. 13, 084005 (2018).

    Google Scholar 

  25. Modernel, P., Astigarraga, L. & Piscasso, V. Global versus local environmental impacts of grazing and confined beef production systems. Environ. Res. Lett. 8, 035052 (2013).

    CAS  Google Scholar 

  26. Davis, K. F. et al. Historical trade-offs of livestock’s environmental impacts. Environ. Res. Lett. 10, 125013 (2015).

    Google Scholar 

  27. Hatfield, J. L., Wright-Morton, L. & Hall, B. Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies. Climatic Change 146, 263–275 (2017).

    Google Scholar 

  28. Burchfield, E. K. Shifting cultivation geographies in the central and eastern US. Environ. Res. Lett. 17, 054049 (2022).

    Google Scholar 

  29. Rotz, C. A., Asem-Hiablie, S., Place, S. & Thoma, G. Environmental footprints of beef cattle production in the United States. Agric. Syst. 169, 1–13 (2019).

    Google Scholar 

  30. Cusack, D. F. et al. Reducing climate impacts of beef production: a synthesis of life cycle assessments across management systems and global regions. Glob. Change Biol. 27, 1721–1736 (2021).

    CAS  Google Scholar 

  31. Zubieta, A. S. et al. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Sci. Total Environ. 754, 142029 (2021).

    CAS  Google Scholar 

  32. Smith, P. E., Kelly, A. K., Kenny, D. A. & Waters, S. M. Enteric methane research and mitigation strategies for pastoral-based beef cattle in production systems. Front. Vet. Sci. 9, 958340 (2022).

    Google Scholar 

  33. Eshel, G., Shepon, A., Makov, T. & Milo, R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy produciton in the United States. Proc. Natl Acad. Sci. USA 111, 11996–12001 (2014).

    CAS  Google Scholar 

  34. Donner, S. D. & Kucharik, C. J. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl Acad. Sci. USA 105, 4513–4518 (2008).

    CAS  Google Scholar 

  35. Thaler, E. A., Larsen, I. J. & Yu, Q. The extent of soil loss across the US Corn Belt. Proc. Natl Acad. Sci. USA 118, 8e1922375118 (2021).

    Google Scholar 

  36. Sanderson, J. S. et al. Cattle, conservation, and carbon in the western Great Plains. J. Soil Water Conserv. 75, 5A–12A (2020).

    Google Scholar 

  37. Tittonell, P. Beyond CO2: multiple ecosystem services from ecologically intensive grazing landscapes of South America. Front. Sustain. Food Syst. 5, 664103 (2021).

    Google Scholar 

  38. Lu, C. et al. Increasing carbon footprint of grain crop production in the US Western Corn Belt. Environ. Res. Lett. 13, 124007 (2018).

    CAS  Google Scholar 

  39. Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).

    CAS  Google Scholar 

  40. Jablonski, K. E., Dillon, J. A., Hale, J. W., Jablonski, B. B. R. & Carolan, M. S. One place doesn’t fit all: improving the effectiveness of sustainability standards by accounting for place. Front. Sustain. Food Syst. 4, 557754 (2020).

    Google Scholar 

  41. Dumortier, J. et al. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions. Environ. Res. Lett. 7, 024023 (2012).

    Google Scholar 

  42. Behnke, R. H. Grazing into the Anthropocene or back to the future? Front. Sustain. Food Syst. 5, 638806 (2021).

    Google Scholar 

  43. Coppock, D. L. Ranching and multiyear droughts in Utah: production impacts, risk perceptions, and changes in preparedness. Rangel. Ecol. Manag. 64, 607–618 (2011).

    Google Scholar 

  44. Campbell, A., Becerra, T. A., Middendorf, G. & Tomlinson, P. Climate change beliefs, concerns, and attitudes of beef cattle producers in the Southern Great Plains. Climatic Change 152, 35–46 (2018).

    Google Scholar 

  45. Reeson, A. F. et al. The agistement market in the northern Australian rangelands: failings and opportunities. Rangel. J. 30, 283–289 (2008).

    Google Scholar 

  46. Barry, S. Livestock mobility through integrated beef production-scapes supports rangeland livestock production and conservation. Front. Sustain. Food Syst. 4, 549359 (2021).

    Google Scholar 

  47. Countryman, A. M., Paarlberg, P. L. & Lee, J. G. Dynamic effects of drought on the U.S. beef supply chain. Agric. Resour. Econ. Rev. 45, 459–484 (2016).

    Google Scholar 

  48. Reinhart, K. O., Sanni Worogo, H. S. & Rinella, M. J. Ruminating on the science of carbon ranching. J. Appl. Ecol. 59, 642–648 (2021).

    Google Scholar 

  49. Wongpiyabovorn, O., Plastina, A. & Crespi, J. M. Challenges to voluntary Ag carbon markets. Appl. Econ. Perspect. Policy https://doi.org/10.1002/aepp.13254 (2022).

  50. Zhou, G. et al. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob. Change Biol. 23, 1167–1179 (2017).

    Google Scholar 

  51. Throop, H. L., Archer, S. R. & McClaran, M. P. Soil organic carbon in drylands: shrub encroachment and vegetation management effects dwarf those of livestock grazing. Ecol. Appl. 30, e02150 (2020).

    Google Scholar 

  52. Archer, S. R. & Predick, K. I. An ecosystem services perspective on brush management: research priorities for competing land-use objectives. J. Ecol. 102, 1394–1407 (2014).

    Google Scholar 

  53. van Zalk, J. & Behrens, P. The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy 123, 83–91 (2018).

    Google Scholar 

  54. Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).

    Google Scholar 

  55. Harrison-Atlas, D., Lopez, A. & Lantz, E. Dynamic land use implications of rapidly expanding and evolving wind power deployment. Environ. Res. Lett. 17, 044064 (2022).

    Google Scholar 

  56. Barron-Gafford, G. A. et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain 2, 848–855 (2019).

    Google Scholar 

  57. Ott, J. P. et al. Energy development and production in the Great Plains: implications and mitigation opportunities. Rangel. Ecol. Manag. 78, 257–272 (2021).

    Google Scholar 

  58. Swette, B. & Lambin, E. F. Institutional changes drive land use transitions on rangelands: the case of grazing on public lands in the American West. Glob. Environ. Change 66, 102220 (2021).

    Google Scholar 

  59. Milkoreit, M. et al. Defining tipping points for social-ecological systems scholarhship—an interdisciplinary literature review. Environ. Res. Lett. 13, 033005 (2018).

    Google Scholar 

  60. Abson, D. J. et al. Leverage points for sustainable transformation. Ambio 46, 30–39 (2017).

    Google Scholar 

  61. Williams, A. P. et al. Large contribution from anthopogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    CAS  Google Scholar 

  62. Reid, R. S. et al. Using research to support transformative impacts on complex, ‘wicked problems’ with pastoral peoples in rangelands. Front. Sustain. Food Syst. 4, 600689 (2021).

    Google Scholar 

  63. Robinson, N. P., Allred, B. W., Naugle, D. E. & Jones, M. O. Patterns of rangeland productivity and land ownership: implications for conservation and management. Ecol. Appl. 29, e01862 (2019).

    Google Scholar 

  64. Runge, C. A. et al. Unintended habitat loss on private land from grazing restrictons on public rangelands. J. Appl. Ecol. 56, 52–62 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank D. Pyke with the US Geological Survey for their valuable contributions to an earlier version of the paper. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. S. Kagone created Fig. 1, M. Joyce created Fig. 2, and A. Briske and E. Raynor revised Boxes 1 and 2.

Author information

Authors and Affiliations

Authors

Contributions

D.D.B. proposed the initial concept and led the paper writing. S.R.A., E.B., W.B., J.D.D., H.G., J.H., C.E.K., M.K., T.J.L., P.N., O.S., N.F.S. and K.R.S.-L. contributed to paper development and revision in their specific areas of expertise.

Corresponding author

Correspondence to David D. Briske.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briske, D.D., Archer, S.R., Burchfield, E. et al. Supplying ecosystem services on US rangelands. Nat Sustain 6, 1524–1532 (2023). https://doi.org/10.1038/s41893-023-01194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01194-6

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene