Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge

Abstract

As the market uptake of perovskite solar cells (PSCs) is projected to grow rapidly, this clean energy technology will play an increasingly important role in reducing the global carbon footprint. However, one of the major barriers to its full commercialization is the presence of toxic lead (Pb), which enables the current record in photoconversion efficiency but risks being released into the environment when subjected to water or rain. Here we show that Pb leakage can be prevented by applying a transparent titanium dioxide (TiO2) sponge that allows for an efficient Pb sequestration of 58 ng cm−2 nm−1. Already an essential material for PSCs, the additional use of TiO2 through a scalable and solvent-free sputtering process promises extra cost benefits and higher sustainability. Further demonstration of the sponge application with desired thickness on ready-to-use devices, glass and polymeric foils enforces the practical value of the current approach. Our study provides a sustainable solution to one of the environmental and health risks of PSCs and would accelerate their practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pb capture by TiO2 sponges integrated on PSCs.
Fig. 2: Pb capture by TiO2 sponges in aqueous solutions.
Fig. 3: Possible schemes for the TiO2 sponge integration.
Fig. 4: Mechanism of Pb capture by TiO2 sponges.
Fig. 5: DFT calculations of Pb adsorption on TiO2.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within this paper and the Supplementary Information. Source data are provided with this paper.

References

  1. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  Google Scholar 

  2. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  Google Scholar 

  3. Rong, Y. et al. Challenges for commercializing perovskite solar cells. Science 361, eaat8235 (2018).

    Article  Google Scholar 

  4. Mathews, I. et al. Economically sustainable growth of perovskite photovoltaics manufacturing. Joule 4, 822–839 (2020).

    Article  Google Scholar 

  5. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  6. Reddy, S. H., Di Giacomo, F. & Di Carlo, A. Low-temperature-processed stable perovskite solar cells and modules: a comprehensive review. Adv. Energy Mater. 12, 2103534 (2022).

    Article  CAS  Google Scholar 

  7. Li, J. et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 11, 310 (2020).

    Article  Google Scholar 

  8. Ponti, C. et al. Environmental lead exposure from halide perovskites in solar cells. Trends Ecol. Evol. 37, 281–283 (2022).

    Article  CAS  Google Scholar 

  9. Gorjian, S. et al. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew. Sust. Energ. Rev. 158, 112126 (2022).

    Article  CAS  Google Scholar 

  10. Koh, T. M. et al. Halide perovskite solar cells for building integrated photovoltaics: transforming building façades into power generators. Adv. Mater. 34, 2104661 (2022).

    Article  CAS  Google Scholar 

  11. Pitaro, M., Tekelenburg, E. K., Shao, S. & Loi, M. A. Tin halide perovskites: from fundamental properties to solar cells. Adv. Mater. 34, 2105844 (2022).

    Article  CAS  Google Scholar 

  12. Jiang, X. et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143, 10970–10976 (2021).

    Article  CAS  Google Scholar 

  13. Sanchez-Diaz, J. et al. Tin perovskite solar cells with >1,300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule 6, 861–883 (2022).

    Article  CAS  Google Scholar 

  14. Jiang, Y. et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4, 585–593 (2019).

    Article  CAS  Google Scholar 

  15. Ravi, V. K., Mondal, B., Nawale, V. V. & Nag, A. Don’t let the lead out: new material chemistry approaches for sustainable lead halide perovskite solar cells. ACS Omega 5, 29631–29641 (2020).

    Article  CAS  Google Scholar 

  16. Li, X. et al. On-device lead sequestration for perovskite solar cells. Nature 578, 555–558 (2020).

    Article  CAS  Google Scholar 

  17. Chen, S. et al. Trapping lead in perovskite solar modules with abundant and low-cost cation exchange resins. Nat. Energy 5, 1003–1011 (2020).

    Article  Google Scholar 

  18. Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 4, 636–643 (2021).

    Article  Google Scholar 

  19. Lee, J., Kim, G.-W., Kim, M., Park, S. A. & Park, T. Nonaromatic green-solvent-processable, dopant-free, and lead-capturable hole transport polymers in perovskite solar cells with high efficiency. Adv. Energy Mater. 10, 1902662 (2020).

    Article  CAS  Google Scholar 

  20. Li, X. et al. On-device lead-absorbing tapes for sustainable perovskite solar cells. Nat. Sustain. 4, 1038–1041 (2021).

    Article  CAS  Google Scholar 

  21. Clarke, C. J., Tu, W., Levers, O., Bröhl, A. & Hallett, J. P. Green and sustainable solvents in chemical processes. Chem. Rev. 118, 747–800 (2018).

    Article  CAS  Google Scholar 

  22. Albini, A., Protti, S. in Paradigms in Green Chemistry and Technology 77–85 (Springer, 2016).

  23. Chea, J. D. Evaluation of solvent recovery options for economic feasibility through a superstructure-based optimization framework. Ind. Eng. Chem. Res. 59, 5931–5944 (2020).

    Article  CAS  Google Scholar 

  24. Giammar, D. E., Maus, C. J. & Xie, L. Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ. Eng. Sci. 24, 85–95 (2007).

    Article  CAS  Google Scholar 

  25. Zhao, X., Jia, Q., Song, N., Zhou, W. & Li, Y. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and isotherms. J. Chem. Eng. Data 55, 4428–4433 (2010).

    Article  CAS  Google Scholar 

  26. Liang, P., Qin, Y. C., Hu, B., Peng, T. Y. & Jiang, Z. C. Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. Anal. Chim. Acta 440, 207–213 (2001).

    Article  CAS  Google Scholar 

  27. Lee, S. & Park, S. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761–1769 (2013).

    Article  CAS  Google Scholar 

  28. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2022).

    Article  CAS  Google Scholar 

  29. Kim, M. et al. Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302–306 (2022).

    Article  CAS  Google Scholar 

  30. Seo, S. et al. Amorphous TiO2 coatings stabilize perovskite solar cells. ACS Energy Lett. 6, 3332–3341 (2021).

    Article  CAS  Google Scholar 

  31. Alberti, A. et al. Nanostructured TiO2 grown by low-temperature reactive sputtering for planar perovskite solar cells. ACS Appl. Energy Mater. 2, 6218–6229 (2019).

    Article  CAS  Google Scholar 

  32. Sanzaro, S. et al. Multi-scale-porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics. Sci. Rep. 6, 39509 (2016).

    Article  CAS  Google Scholar 

  33. Alberti, A. et al. Innovative spongy TiO2 layers for gas detection at low working temperature. Sens. Actuators B 259, 658–667 (2018).

    Article  CAS  Google Scholar 

  34. Bisconti, F. et al. Managing transparency through polymer/perovskite blending: a route toward thermostable and highly efficient, semi-transparent solar cells. Nano Energy 89, 106406 (2021).

    Article  CAS  Google Scholar 

  35. Giuliano, G., Bonasera, A., Arrabito, G. & Pignataro, B. Semitransparent perovskite solar cells for building integration and tandem photovoltaics: design strategies and challenges. Sol. RRL 5, 2100702 (2021).

    Article  CAS  Google Scholar 

  36. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  37. Park, S. Y. & Zhu, K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34, 2110438 (2022).

    Article  CAS  Google Scholar 

  38. Smecca, E. et al. Porous gig-lox TiO2 doped with N2 at room temperature for P-type response to ethanol. Chemosensors 7, 1–12 (2019).

    Article  Google Scholar 

  39. Sanzaro, S. et al. Pervasive infiltration and multi-branch chemisorption of N-719 molecules into newly designed spongy TiO2 layers deposited by gig-lox sputtering processes. J. Mater. Chem. A 5, 25529–25538 (2017).

    Article  CAS  Google Scholar 

  40. Sanzaro, S. et al. Bimodal porosity and stability of a TiO2 gig-lox sponge infiltrated with methyl-ammonium lead iodide perovskite. Nanomaterials 9, 1300 (2019).

    Article  CAS  Google Scholar 

  41. Alberti, A. et al. MOx-based gas sensor and manufacturing method thereof. US patent 10871462B2 (2020).

  42. Ratcliff, L. E. et al. Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. J. Chem. Phys. 152, 194110 (2020).

    Article  CAS  Google Scholar 

  43. MaX Centre of Excellence Project. BigDFT software package http://www.bigdft.org (2005).

  44. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  45. Willand, A. et al. Conserving pseudopotentials with chemical accuracy compared to all-electron calculations. J. Chem. Phys. 138, 104109 (2013).

    Article  Google Scholar 

  46. Marques, M. A., Oliveira, M. J. & Burnus, T. Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Comm. 183, 2272–2281 (2012).

    Article  CAS  Google Scholar 

  47. Reddy, K. M., Manorama, S. V. & Reddy, A. R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239–245 (2003).

    Article  Google Scholar 

  48. Fisicaro, G. et al. Wet environment effects for ethanol and water adsorption on anatase TiO2 (101) surfaces. J. Phys. Chem. C. 124, 2406–2419 (2020).

    Article  CAS  Google Scholar 

  49. Fisicaro, G., Genovese, L., Andreussi, O., Marzari, N. & Goedecker, S. A generalized Poisson and Poisson–Boltzmann solver for electrostatic environments. J. Chem. Phys. 144, 014103 (2016).

    Article  CAS  Google Scholar 

  50. Fisicaro, G. et al. Soft-sphere continuum solvation in electronic-structure calculations. J. Chem. Theory Comput. 13, 3829–3845 (2017).

    Article  CAS  Google Scholar 

  51. Andreussi, O. & Fisicaro, G. Continuum embeddings in condensed-matter simulations. Int. J. Quantum Chem. 119, e25725 (2019).

    Article  Google Scholar 

  52. Buckley, F. & Maryott, A.A. Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions (US Dept. of Commerce, National Bureau of Standards, 1958).

  53. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This activity was partially supported at National Research Council (CNR) by the national projects, BEYOND NANO Upgrade (Univocal Project Code (CUP) G66J17000350007) and VertiGrow (CUP B15F21004410005). This work has been partially funded by the European Union (NextGeneration EU), through the MUR-PNRR project SAMOTHRACE – Sicilian MicronanoTech Research and Innovation Center (ECS00000022, CUP B63C22000620005). This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s963 and s1167. We thank T. Quinn for her kind proofreading work. We also thank V. Privitera (CNR-IMM) for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

S.V. conceived the idea of the experiment, coordinated data analyses and cross-correlations and wrote the paper; E.S. and V.A performed X-ray reflectivity measurements; C.B. carried out STEM and energy dispersive X-ray analyses, under the supervision of C. Spinella; S.D., A.S. and S.C. conducted Pb sequestration measurements; F.B. and A.R. fabricated perovskite solar cells; G.M and C. Spampinato performed spectroscopic ellipsometry measurements; G.F., I.D. and S.G. carried out DFT calculations; E.F. and F.N. performed X-ray photoelectron spectroscopy analysis; A.L.M. supervised the research. A.A. planned and coordinated the experiments, data analyses, collaborations and funding. All authors reviewed the paper.

Corresponding author

Correspondence to Alessandra Alberti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

: Nature Sustainability thanks Shangshang Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–6 and Notes 1–6.

Reporting Summary

Supplementary Data

Data of forward-scan current density–voltage curve in Supplementary Fig. 1.

Supplementary Data

Data of photovoltaic parameters over time in Supplementary Fig. 2.

Supplementary Data

Data of transmittance vs photon energy in Supplementary Fig. 3.

Supplementary Data

Data of absorption coefficient and transmittance vs photon energy in Supplementary Fig. 7a,b.

Supplementary Data

Data of absorption coefficient vs photon energy in Supplementary Fig. 14.

Source data

Source Data Fig. 1

Data of reverse-scan current density–voltage curve in Fig. 1f.

Source Data Fig. 2

Data of Pb concentration vs time and Pb-adsorption capability vs TiO2 thickness in Fig. 2b,c.

Source Data Fig. 4

Data of energy dispersive X-ray graph in Fig. 4f.

Source Data Fig. 5

Data of Kohn–Sham total energy in Fig. 5e,f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valastro, S., Smecca, E., Mannino, G. et al. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge. Nat Sustain 6, 974–983 (2023). https://doi.org/10.1038/s41893-023-01120-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01120-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing