Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms

Abstract

Trees within farmers’ fields can enhance systems’ longer-term productivity, for example, via nutrient amelioration, which is indispensable to attain sustainable agroecosystems. While arbuscular mycorrhizal fungi (AMF) are known to improve plant access to soil nutrients, the potential of AMF to mediate nutrient uptake of tree-derived nitrogen (N) by crops from beyond the crops’ rooting zones is unclear. We hypothesized that AMF quantitatively contribute to the crop uptake of tree-derived N. We set up root- and AMF-exclusion and control plots around faidherbia trees (Faidherbia albida) and used the 15N natural abundance technique to determine the magnitude of AMF-mediated uptake of tree-derived N by maize from beyond its rooting zone in smallholder fields. We further tested whether AMF-mediated N uptake decreases with distance from tree. We show that within one cropping season, maize obtained approximately 35 kg ha–1 biologically fixed N from faidherbia. One-third of tree-derived N in maize leaves was attributed to AMF-mediated N uptake from beyond the maize rooting zone and two-thirds to N from tree leaf litter, regardless of distance from tree. As hypothesized, maize grown close (1 m) to faidherbia obtained significantly more tree-derived N than that at farther distances (4 and 5 m). Thus, the faidherbia–AMF association can enhance agroecosystem functioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low-input agroforestry system with maize and F. albida in central Malawi and visualization of the experimental manipulation used to study the effect of AMF-mediated uptake of tree-derived biologically fixed N2 by maize.
Fig. 2: Proportion of tree-derived N in leaves of maize surrounding F. albida.

Similar content being viewed by others

Data availability

The analysed datasets and R scripts used to analyse the data are available in the Zenodo repository: https://doi.org/10.5281/zenodo.5275322. Source data are provided with this paper.

References

  1. The State of Food Insecurity in the World—How Does International Price Volatility Affect Domestic Economies and Food Security? (FAO, 2011).

  2. Catchpoole, D. W. & Blair, G. Forage tree legumes I. Productivity and N economy of leucaena, gliricidia, calliandra and sesbania and tree/green panic mixtures. Aust. J. Agric. Res 41, 521–530 (1990).

    Article  CAS  Google Scholar 

  3. Xu, Z. H., Saffigna, P. G., Myers, R. J. K. & Chapman, A. L. Nitrogen cycling in leucaena (Leucaena lecuocephala) alley cropping in semiarid tropics. 1. Mineralization of nitrogen from leucaena residues. Plant Soil 148, 63–72 (1993).

    Article  CAS  Google Scholar 

  4. Beer, J., Muschler, R., Kass, D. & Somarriba, E. Shade management in coffee and cacao plantations. Agrofor. Syst. 38, 139–164 (1998).

    Article  Google Scholar 

  5. Snoeck, D., Zapata, F. & Domenach, A.-M. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol. Agron. Soc. Environ. 4, 95–100 (2000).

    CAS  Google Scholar 

  6. Sierra, J. & Nygren, P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol. Biochem. 38, 1893–1903 (2006).

    Article  CAS  Google Scholar 

  7. He, X. H., Critchley, C. & Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 22, 531–567 (2003).

    Article  Google Scholar 

  8. Jalonen, R., Nygren, P. & Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ. 32, 1366–1376 (2009).

    Article  CAS  Google Scholar 

  9. Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    Article  Google Scholar 

  10. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Academic Press, 2008).

  11. Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. 164, 175–181 (2004).

    Article  Google Scholar 

  12. Newman, E. I. & Ritz, K. Evidence on the pathways of phosphorus transfer between vesicular–arbuscular mycorrhizal plants. New Phytol. 104, 77–87 (1986).

    Article  CAS  Google Scholar 

  13. Mikkelsen, B. L., Rosendahl, S. & Jakobsen, I. Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol. 4, 890–898 (2008).

    Article  Google Scholar 

  14. Saka, A. R., Bunderson, W. T., Itimu, O. A., Phombeya, H. S. K. & Mbekeani, Y. The effects of Acacia albida on soils and maize grain yields under smallholder farm conditions in Malawi. For. Ecol. Manage. 64, 217–230 (1994).

    Article  Google Scholar 

  15. Rhoades, C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central Malawi. Agrofor. Syst. 29, 133–145 (1995).

    Article  Google Scholar 

  16. Sileshi, G. W. et al. in Encyclopedia of Agriculture and Food Systems (ed. van Alfen, N.) 222–234 (Elsevier, 2014).

  17. Yengwe, J., Gebremikael, M. T., Buchan, D., Lungu, O. & De Neve, S. Effects of Faidherbia albida canopy and leaf litter on soil microbial communities and nitrogen mineralization in selected Zambian soils. Agrofor. Syst. 92, 349–363 (2018).

    Google Scholar 

  18. Yengwe, J., Amalia, O., Lungu, O. I. & De Neve, S. Quantifying nutrient deposition and yield levels of maize (Zea mays) under Faidherbia albida agroforestry system in Zambia. Eur. J. Agron. 99, 148–155 (2018).

    Article  CAS  Google Scholar 

  19. Sida, T. S., Baudron, F., Ndoli, A., Tirfessa, D. & Giller, K. E. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil 453, 173–188 (2020).

    Article  CAS  Google Scholar 

  20. Umar, B. B., Aune, J. B. & Lungu, O. I. Effects of Faidherbia albida on the fertility of soil in smallholder conservation agriculture systems in eastern and southern Zambia. Afr. J. Agric. Res. 8, 173–183 (2013).

    Google Scholar 

  21. Hadgu, K. M., Kooistra, L., Rossing, W. A. H. & van Bruggen, A. H. C. Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Security 1, 337–350 (2009).

    Article  Google Scholar 

  22. Dalpé, Y., Diop, T. A., Plenchette, C. & Gueye, M. Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10, 125–129 (2000).

    Article  Google Scholar 

  23. Boddey, R. M., Peoples, M. B., Palmer, B. & Dart, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr. Cycl. Agroecosyst. 57, 235–270 (2000).

    Article  Google Scholar 

  24. Oberson, A. et al. Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290, 69–83 (2007).

    Article  CAS  Google Scholar 

  25. Snapp, S., Borden, H. & Rohrbach, D. Improving nitrogen efficiency: lessons from Malawi and Michigan. Sci. World 1, 42–48 (2001).

    Google Scholar 

  26. Akinnifesi, F. K., Wakumba, W. & Kwesiga, F. R. Sustainable maize production using gliricidia/maize intercropping in southern Malawi. Exp. Agric. 42, 441–457 (2006).

    Article  Google Scholar 

  27. Tovihoudji, P. G., Irenikatché Akponikpè, P. B., Agbossou, E. K., Bertin, P. & Bielders, C. L. Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Res. 213, 130–142 (2017).

    Article  Google Scholar 

  28. Hill, P. W. et al. Angiosperm symbioses with non-mycorrhizal fungal partners enhance N acquisition from ancient organic matter in a warming maritime Antarctic. Ecol. Lett. 22, 2111–2119 (2019).

    Article  Google Scholar 

  29. Bueno de Mesquita, C. P. et al. Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol. 36, 63–74 (2018).

    Article  Google Scholar 

  30. Alexandre, D. Y. & Ouedraogo, S. J. in Faidherbia albida in the West African Semi-arid Tropics: Proceedings of a Workshop (ed. Vandenbeldt, R. J.) 107–110 (International Centre for Research in Agroforestry, 1992).

  31. Jones, A. et al. Soil Atlas of Africa (European Commission, 2013).

  32. Dierks, J. et al. Trees enhance abundance of arbuscular mycorrhizal fungi, soil structure, and nutrient retention in low-input maize cropping systems. Agric. Ecosyst. Environ. 318, 107487 (2021).

    Article  CAS  Google Scholar 

  33. Mungai, L. M. et al. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01720 (2016).

  34. Smith, S. E. & Smith, F. A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011).

    Article  CAS  Google Scholar 

  35. Marschner, H. & Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102 (1994).

    Article  CAS  Google Scholar 

  36. Gryndler, M. et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza 28, 435–450 (2018).

    Article  Google Scholar 

  37. Rillig, M. C. et al. Suitability of mycorrhiza-defective mutant/wildtype plant pairs (Solanum lycopersicum L. cv Micro-Tom) to address questions in mycorrhizal soil ecology. Plant Soil 308, 267–275 (2008).

    Article  CAS  Google Scholar 

  38. Koide, R. T. & Li, M. Appropriate controls for vesicular–arbuscular mycorrhiza research. New Phytol. 111, 35–44 (1989).

    Article  Google Scholar 

  39. Fitter, A. H. & Nichols, R. The use of benomyl to control infection by vesicular–arbuscular mycorrhizal fungi. New Phytol. 110, 201–206 (1988).

    Article  CAS  Google Scholar 

  40. Cavagnaro, T. R., Smith, F. A. & Smith, S. E. Interactions between arbuscular mycorrhizal fungi and a mycorrhiza-defective mutant tomato: does a noninfective fungus alter the ability of an infective fungus to colonise the roots—and vice versa? New Phytol. 164, 485–491 (2004).

    Article  Google Scholar 

  41. Carey, P. D., Fitter, A. H. & Watkinson, A. R. A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90, 550–555 (1992).

    Article  Google Scholar 

  42. Merryweather, J. & Fitter, A. Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol. 132, 307–311 (1996).

    Article  CAS  Google Scholar 

  43. Shinners, K. J. & Binversie, B. N. Fractional yield and moisture of corn stover biomass produced in northern US Corn Belt. Biomass Bioenergy 31, 576–584 (2007).

    Article  Google Scholar 

  44. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/

  45. Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).

Download references

Acknowledgements

We thank B. I. Nyoka, E. Barrios, K. Mwafongo, C. Katema, G. Chisusu and H. Warren at the World Agroforestry Centre (ICRAF) for assistance with getting set up in Malawi and ICRAF for providing office and storage space in Lilongwe. Especially, we are grateful to M. Damiano, who, together with P. Chagomelana, L. Chingwalu, N. Chagomelana, K. Bernart, M. Sandram and P. C. Nsasa, greatly assisted with fieldwork. We are thankful to the farmers from Ndindi, Malawi, who granted us access to their land. Further, we thank F. Tamburini, B. Wilde, C. Mikita and B. Jahn-Humphrey for assisting with laboratory and preparatory work and M. van der Heijden for providing input during the initial phase of designing the experiment. Thanks to A. C. Wartenberg for critically reviewing our manuscript. This work was supported by the Swiss National Science Foundation under project number 31003 A_163460.

Author information

Authors and Affiliations

Authors

Contributions

J.D., J.S., W.J.B.-H. and H.A.G. designed the experiment. J.D. and J.S. collected the data. J.D. performed data analyses with input from J.S. The manuscript was written by J.D. with input from J.S., W.J.B.-H. and H.A.G.

Corresponding author

Correspondence to Janina Dierks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Pierre-Emmanuel Courty and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 2

Source data for Fig. 2 on the proportion of tree-derived nitrogen in leaves of maize surrounding Faidherbia albida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierks, J., Blaser-Hart, W.J., Gamper, H.A. et al. Mycorrhizal fungi-mediated uptake of tree-derived nitrogen by maize in smallholder farms. Nat Sustain 5, 64–70 (2022). https://doi.org/10.1038/s41893-021-00791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00791-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing