Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reimagining safe drinking water on the basis of twenty-first-century science

Abstract

Twentieth-century approaches to protecting drinking water supplies cannot keep pace with the ever-expanding set of chemicals that humans emit into the environment. However, with recent advances in bioassays, the measurement of complex chemical mixtures, and artificial intelligence, we are on the cusp of developing a radically different approach to keeping our drinking water safe. In contrast to the reactive and piecemeal status quo approach, this new approach is proactive and evaluates drinking water quality more holistically by focusing on complex mixtures instead of a small set of regulated, well-known chemicals that have been studied for decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: MiAMI: a new vision for safe drinking water.

References

  1. 1.

    Muir, D. C. G. & Howard, P. H. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 40, 7157–7166 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    National Academy of Sciences Science and Decisions: Advancing Risk Assessment (National Academies, 2009); https://doi.org/10.17226/12209

  5. 5.

    Paustenbach, D. J., Panko, J. M., Scott, P. K. & Unice, K. M. A methodology for estimating human exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of a community (1951-2003). J. Toxicol. Environ. Health Pt A 70, 28–57 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Hopkins, Z. R., Sun, M., DeWitt, J. C. & Knappe, D. R. U. Recently detected drinking water contaminants: GenX and other per- and polyfluoroalkyl ether acids. J. Am. Water Works Assoc. 110, 13–28 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Jarema, K. A., Hunter, D. L., Shaffer, R. M., Behl, M. & Padilla, S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol. Teratol. 52, 194–209 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Weis, C. P. The value of alternatives assessment. Environ. Health Perspect. 124, A40 (2016).

    Article  Google Scholar 

  10. 10.

    Jacobs, M. M., Malloy, T. F., Tickner, J. A. & Edwards, S. Alternatives assessment frameworks: research needs for the informed substitution of hazardous chemicals. Environ. Health Perspect. 124, 265–280 (2016).

    Article  Google Scholar 

  11. 11.

    Sarigiannis, D. A. & Hansen, U. Considering the cumulative risk of mixtures of chemicals – a challenge for policy makers. Environ. Health 11(Suppl 1), S18 (2012).

    Article  Google Scholar 

  12. 12.

    Von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Krasner, S. W. et al. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    Richardson, S. D. & Plewa, M. J. To regulate or not to regulate? What to do with more toxic disinfection by-products? J. Environ. Chem. Eng. 8, 103939 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Altenburger, R. et al. Mixture effects in samples of multiple contaminants—an inter-laboratory study with manifold bioassays. Environ. Int. 114, 95–106 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Legler, J. et al. A novel in vivo bioassay for (xeno-)estrogens using transgenic zebrafish. Environ. Sci. Technol. 34, 4439–4444 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    Nelson, J., Bishay, F., van Roodselaar, A., Ikonomou, M. & Law, F. C. P. The use of in vitro bioassays to quantify endocrine disrupting chemicals in municipal wastewater treatment plant effluents. Sci. Total Environ. 374, 80–90 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    Stalter, D., Magdeburg, A. & Oehlmann, J. Comparative toxicity assessment of ozone and activated carbon treated sewage effluents using an in vivo test battery. Water Res. 44, 2610–2620 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Cao, N. et al. Evaluation of wastewater reclamation technologies based on in vitro and in vivo bioassays. Sci. Total Environ. 407, 1588–1597 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Neale, P. A. et al. Application of in vitro bioassays for water quality monitoring in three drinking water treatment plants using different treatment processes including biological treatment, nanofiltration and ozonation coupled with disinfection. Environ. Sci. Water Res. Technol. 6, 2444–2453 (2020).

    CAS  Article  Google Scholar 

  21. 21.

    Escher, B. I. et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ. Sci. Technol. 48, 1940–1956 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Conley, J. M. et al. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants. Sci. Total Environ. 579, 1610–1617 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Medlock Kakaley, E. et al. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Sci. Total Environ. 768, 144750 (2021).

    CAS  Article  Google Scholar 

  24. 24.

    Neale, P. A. & Escher, B. I. In vitro bioassays to assess drinking water quality. Curr. Opin. Environ. Sci. Health 7, 1–7 (2019).

    Article  Google Scholar 

  25. 25.

    Alygizakis, N. A. et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ. Sci. Technol. 52, 5135–5144 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures in our changing environment. Science 367, 388–392 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    Peter, K. T., Wu, C., Tian, Z. & Kolodziej, E. P. Application of nontarget high resolution mass spectrometry data to quantitative source apportionment. Environ. Sci. Technol. 53, 12257–12268 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Schymanski, E. L. et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 407, 6237–6255 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Williams, A. J. et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J. Cheminform. 9, 61 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    CompTox Chemicals Dashboard (US EPA, 2017); https://www.epa.gov/chemical-research/comptox-chemicals-dashboard

  31. 31.

    Dong, H., Cuthbertson, A. A. & Richardson, S. D. Effect-directed analysis (eda): a promising tool for nontarget identification of unknown disinfection byproducts in drinking water. Environ. Sci. Technol. 54, 1290–1292 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    Vughs, D., Baken, K. A., Kolkman, A., Martijn, A. J. & de Voogt, P. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment. Environ. Sci. Pollut. Res. 25, 3951–3964 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Altenburger, R. et al. Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 512–513, 540–551 (2015).

    Article  CAS  Google Scholar 

  34. 34.

    Zwart, N. et al. High-throughput effect-directed analysis using downscaled in vitro reporter gene assays to identify endocrine disruptors in surface water. Environ. Sci. Technol. 52, 4367–4377 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Brunner, A. M. et al. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 705, 135779 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput. Mol. Sci. 6, 147–172 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    New Approach Methods Work Plan (US EPA, 2020).

  38. 38.

    Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939).

    CAS  Article  Google Scholar 

  39. 39.

    Altenburger, R., Nendza, M. & Schüürmann, G. Mixture toxicity and its modeling by quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 1900–1915 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Rider, C. V. & Ellen, J. (eds) Chemical Mixtures and Combined Chemical and Nonchemical Stressors (Springer, 2018); https://doi.org/10.1007/978-3-319-56234-6

  41. 41.

    Rabinowitz, J. R., Goldsmith, M. R., Little, S. B. & Pasquinelli, M. A. Computational molecular modeling for evaluating the toxicity of environmental chemicals: prioritizing bioassay requirements. Environ. Health Perspect. 116, 573–576 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Kwiatkowski, C. F. et al. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 7, 532–543 (2020).

    CAS  Article  Google Scholar 

  43. 43.

    Rosario-Ortiz, F. et al. How do you like your tap water? Science 351, 912–914 (2006).

    Article  Google Scholar 

  44. 44.

    Kar, S. & Leszczynski, J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 7, 15 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Crittenden, J. C. et al. Predicting GAC performance with rapid small-scale column tests. J. Am. Water Works Assoc. 83, 77–87 (1991).

    CAS  Article  Google Scholar 

  46. 46.

    Topol, E. J. Individualized medicine from prewomb to tomb. Cell 157, 241–253 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Ternes, T. A. et al. Integrated evaluation concept to assess the efficacy of advanced wastewater treatment processes for the elimination of micropollutants and pathogens. Environ. Sci. Technol. 51, 308–319 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Leusch, F. D. L. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Drewes, J. E., Hemming, J., Ladenburger, S. J., Schauer, J. & Sonzogni, W. An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environ. Res. 77, 12–23 (2005).

    CAS  Article  Google Scholar 

  50. 50.

    Dingemans, M. M. L., Baken, K. A., van der Oost, R., Schriks, M. & van Wezel, A. P. Risk-based approach in the revised European Union drinking water legislation: opportunities for bioanalytical tools. Integr. Environ. Assess. Manag. 15, 126–134 (2019).

    Article  Google Scholar 

  51. 51.

    Escher, B. I. & Neale, P. A. Effect-based trigger values for mixtures of chemicals in surface water detected with in vitro bioassays. Environ. Toxicol. Chem. 40, 487–499 (2021).

    CAS  Article  Google Scholar 

  52. 52.

    Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    Brack, W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal. Bioanal. Chem. 377, 397–407 (2003).

    CAS  Article  Google Scholar 

  54. 54.

    Campos, B. & Colbourne, J. K. How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environ. Toxicol. Chem. 37, 1252–1259 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Zhen, H. et al. Assessing the impact of wastewater treatment plant effluent on downstream drinking water-source quality using a zebrafish (Danio Rerio) liver cell-based metabolomics approach. Water Res. 145, 198–209 (2018).

    CAS  Article  Google Scholar 

  56. 56.

    Xia, P. et al. Benchmarking water quality from wastewater to drinking waters using reduced transcriptome of human cells. Environ. Sci. Technol. 51, 9318–9326 (2017).

    CAS  Article  Google Scholar 

  57. 57.

    Prasse, C. Reactivity-directed analysis-a novel approach for the identification of toxic organic electrophiles in drinking water. Environ. Sci. Process. Impacts 23, 48–65 (2021).

    CAS  Article  Google Scholar 

  58. 58.

    Dodd, B. AB-1755 The Open and Transparent Water Data Act: Assembly Bill No. 1755 (California Legislative Information, 2016); https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160AB1755

  59. 59.

    Mons, B., Schultes, E., Liu, F. & Jacobsen, A. The FAIR principles: first generation implementation choices and challenges. Data Intell. 2, 1–9 (2020).

    Article  Google Scholar 

  60. 60.

    National Research Council Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies, 2011).

  61. 61.

    Drinking Water and Public Health in the United States (American Public Health Association, 2019).

  62. 62.

    Allman, A., Daoutiis, P., Arnol, W. A. & Cussler, E. L. Efficient water pollution abatement. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.9b03241 (2019).

  63. 63.

    A Working Approach for Identifying Potential Candidate Chemicals for Prioritization (US EPA, 2018).

  64. 64.

    Janesick, A. S. et al. On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens. Environ. Health Perspect. https://doi.org/10.1289/ehp.1510352 (2016).

  65. 65.

    Janesick, A. S., Dimastrogiovanni, G., Chamorro-Garcia, R. & Blumberg, B. Reply to “comment on ‘On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens’”. Environ. Health Perspect. https://doi.org/10.1289/EHP1122 (2017).

  66. 66.

    Houck, K. A. et al. Comment on “On the utility of ToxCastTM and ToxPi as methods for identifying new obesogens”. Environ. Health Perspect. https://doi.org/10.1289/EHP881 (2017).

  67. 67.

    Molnar, C. et al. Pitfalls to avoid when interpreting machine learning models. Preprint at https://arxiv.org/abs/2007.04131 (2020).

Download references

Acknowledgements

We thank W. Arnold, W. Ball, T. Burke, D. Knappe, K. Nachman, J. Goddard and K. Rowles for their comments on earlier versions of this manuscript, and S. Grant for ideas related to precision health. We acknowledge internal funding from Johns Hopkins University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carsten Prasse.

Ethics declarations

Competing interests

P.J.F. declares no competing interests. C.P. serves as scientific advisor of SimpleLab.

Additional information

Peer review information Nature Sustainability thanks Johan Lundqvist and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferraro, P.J., Prasse, C. Reimagining safe drinking water on the basis of twenty-first-century science. Nat Sustain (2021). https://doi.org/10.1038/s41893-021-00760-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing