Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The viability and desirability of replacing palm oil


The expansion of palm oil cultivation in recent decades has led to substantial increases in greenhouse gas emissions and biodiversity loss from carbon-rich tropical forest. Because of this, there is increased focus on replacement of palm oil in industrial and consumer products. Plant oils like rapeseed and sunflower oil, exotic oils such as coconut oil and shea butter, and microbial single cell oils have been suggested as potential replacements. Here, we review each of these options from a technical, environmental and economic perspective, including the option to improve the sustainability of existing palm oil cultivation practices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. OECD-FAO Agricultural Outlook 2017-2026 Special Focus: Southeast Asia (OECD/FAO, 2017).

  2. Wicke, B., Sikkema, R., Dornburg, V. & Faaij, A. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28, 193–206 (2011).

    Article  Google Scholar 

  3. Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).

    Article  Google Scholar 

  4. Schebek, L., Mizgajski, J. T., Schaldach, R. & Wimmer, F. in From Science to Society: New Trends in Environmental Informatics (eds Otjacques, B. et al.) 49–59 (Springer, 2017).

  5. Key World Energy Statistics 2018 (IEA, 2018).

  6. Mba, O. I., Dumont, M.-J. & Ngadi, M. Palm oil: processing, characterisation and utilisation in the food industry - a review. Food Biosci. 10, 26–41 (2015).

    Article  CAS  Google Scholar 

  7. Lin, S. W. in Vegetable Oils in Food Technology: Composition, Properties and Uses 2nd edn (ed. Gunstone, F. D.) 25–58 (Blackwell Publishing Ltd, 2011).

  8. Tomkins, T. & Drackley, J. K. Applications of Palm Oil in Animal Nutrition. J. Oil Palm. Res. 22, 835–845 (2010).

    CAS  Google Scholar 

  9. Rupilius, W. & Ahmad, S. Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur. J. Lipid Sci. Technol. 109, 433–439 (2007).

    Article  CAS  Google Scholar 

  10. Ratledge, C. & Cohen, Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 20, 155–160 (2008).

    Article  Google Scholar 

  11. Whiffin, F., Santomauro, F. & Chuck, C. J. Toward a microbial palm oil substitute: oleaginous yeasts cultured on lignocellulose. Biofuel. Bioprod. Biorefin. 10, 316–334 (2016).

    Article  CAS  Google Scholar 

  12. Hinrichsen, N. Commercially available alternatives to palm oil. Lipid Technol. 28, 65–67 (2016).

    Article  Google Scholar 

  13. Food and Agriculture Data (FAOSTAT, 2017);

  14. Anushree, S., André, M., Guillaume, D. & Frédéric, F. Stearic sunflower oil as a sustainable and healthy alternative to palm oil. Agron. Sustain. Dev. 37, 18 (2017).

    Article  CAS  Google Scholar 

  15. Keneni, Y. G. & Marchetti, J. M. Oil extraction from plant seeds for biodiesel production. AIMS Energy 5, 316–340 (2017).

    Article  CAS  Google Scholar 

  16. Arvidsson, R., Persson, S., Froling, M. & Svanstrom, M. Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J. Clean. Prod. 19, 129–137 (2013).

    Article  CAS  Google Scholar 

  17. Schmidt, J. H. Comparative life cycle assessment of rapeseed oil and palm oil. Int. J. Life Cycle Assess. 15, 183–197 (2010).

    Article  CAS  Google Scholar 

  18. Schmidt, J. H. Life cycle assessment of five vegetable oils. J. Clean. Prod. 87, 130–138 (2015).

    Article  Google Scholar 

  19. Oilcrops Complex: Policy Changes and Industry Measures – Annual Compendium (FAO, 2017);

  20. Dufour, J. & Iribarren, D. Life cycle assessment of biodiesel production from free fatty acid-rich wastes. Renew. Energy 38, 155–162 (2012).

    Article  CAS  Google Scholar 

  21. Esteves, V. P. P. et al. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). J. Clean. Prod. 151, 578–591 (2017).

    Article  CAS  Google Scholar 

  22. de Guzman, D. Fat fight: Catch-22 for Western Oleochemicals? (AOCS, 2013);

  23. Airline in first biofuel flight. BBC (2008).

  24. Silva, F. C. et al. Production of biodiesel from babassu oil using methanol-ethanol blends. Eclét. Quím. 35, 41–46 (2010).

    Article  CAS  Google Scholar 

  25. Thapa, S., Indrawan, N. & Bhoi, P. R. An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines. Environ. Technol. Innov. 9, 210–219 (2018).

    Article  Google Scholar 

  26. Sandouqa, A. & Al-Hamamre, Z. Energy analysis of biodiesel production from jojoba seed oil. Renew. Energy 130, 831–842 (2019).

    Article  Google Scholar 

  27. Exporting Shea Butter for Cosmetics to Europe (CBI, 2019).

  28. Glew, D. & Lovett, P. N. Life cycle analysis of shea butter use in cosmetics: from parklands to product, low carbon opportunities. J. Clean. Prod. 68, 73–80 (2014).

    Article  Google Scholar 

  29. Are you invested in Exploitation? Why US Investment Firms Should Quit Financing Conflict Palm Oil and Commit to Human Rights (Friends of the Earth, 2016).

  30. Cohen, Z. & Ratledge, C. (eds) Single Cell Oils - Microbial and Algal Oils 2nd edn (AOCS Press, 2010).

  31. Singh, S. & Olsen, S. I. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88, 3548–3555 (2011).

    Article  CAS  Google Scholar 

  32. Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae (NREL, 1998).

  33. Ratledge, C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochemie 86, 807–815 (2004).

    Article  CAS  Google Scholar 

  34. Hicks, R., Gore-Lloyd, D., Henk, D. & Chuck, C. Adaptive evolution method for increased performance in Metchnikowia pulcherrima. GB patent P124919GB (2019).

  35. Ykema, A., Verbree, E. C., Kater, M. M. & Smit, H. Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in whey permeate. Appl. Microbiol. Biotechnol. 28, 211–218 (1988).

    Google Scholar 

  36. Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximised by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).

    Article  CAS  Google Scholar 

  37. Davies, R. in Single Cell Oil (ed. Moreton, R. S.) 99–146 (John Wiley & Sons, 1988).

  38. Giam, X., Mani, L., Koh, L. P. & Tan, H. T. W. Saving tropical forests by knowing what we consume. Conserv. Lett. 9, 267–274 (2016).

    Article  Google Scholar 

  39. Parsons, S., Chuck, C. J. & McManus, M. C. Microbial lipids: progress in life cycle assessment (LCA) and future outlook of heterotrophic algae and yeast-derived oils. J. Clean. Prod. 172, 661–672 (2018).

    Article  CAS  Google Scholar 

  40. Quinn, J. C. & Davis, R. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour. Technol. 184, 444–452 (2015).

    Article  CAS  Google Scholar 

  41. Koutinas, A. A., Chatzifragkou, A., Kopsahelis, N., Papanikolaou, S. & Kookos, I. K. Design and techo-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116, 566–577 (2014).

    Article  CAS  Google Scholar 

  42. Chang, K. J. L. et al. Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production. J. Appl. Phycol. 27, 639–647 (2015).

    Article  CAS  Google Scholar 

  43. Karlsson, H. et al. A systems analysis of biodiesel production from wheat straw using oleaginous yeast: process design, mass and energy balances. Biotechnol. Biofuels 9, 229 (2016).

    Article  CAS  Google Scholar 

  44. Braunwald, T., French, W. T., Claupein, W. & Graeff-Honninger, S. Economic assessment of biodiesel production using heterotrophic yeast. Int. J. Green. Energy 13, 274–282 (2016).

    Article  CAS  Google Scholar 

  45. Jena, U. et al. Oleaginous yeast platform for producing biofuels via co-solvent hydrothermal liquefaction. Biotechnol. Biofuels 8, 167 (2015).

    Article  CAS  Google Scholar 

  46. Summers, H. M. et al. Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction. Bioresour. Technol. 196, 431–440 (2015).

    Article  CAS  Google Scholar 

  47. Parsons, S., Abeln, F., McManus, M. C. & Chuck, C. J. Techno‐economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty. J. Chem. Technol. Biotechnol. 94, 701–711 (2018).

    Article  CAS  Google Scholar 

  48. Aladedunye, F. & Przybylski, R. Performance of palm olein and modified rapeseed, sunflower, and soybean oils in intermittent deep‐frying. Eur. J. Lipid Sci. Technol. 116, 144–152 (2014).

    Article  CAS  Google Scholar 

  49. Santomauro, F., Whiffin, F., Scott, R. J. & Chuck, C. J. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels 7, 34 (2014).

    Article  CAS  Google Scholar 

  50. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources PE/48/2018/REV/1 (European Parliament, 2018).

  51. A Global Standard For Sustainable Palm Oil (RSPO, 2019);

  52. Oosterveer, P., Adjei, B. E., Vellema, S. & Slingerland, M. Global sustainability standards and food security: exploring unintended effects of voluntary certification in palm oil. Glob. Food Secur. 3, 220–226 (2014).

    Article  Google Scholar 

  53. Ruysschaert, D. & Salles, D. Towards global voluntary standards: questioning the effectiveness in attaining conservation goals: the case of the Roundtable on Sustainable Palm Oil (RSPO). Ecol. Econ. 107, 438–446 (2014).

    Article  Google Scholar 

  54. Principles and Criteria for the Production of Sustainable Palm Oil (RSPO, 2018).

  55. Adoption of RSPO Independent Smallholder Standard at the 16th Annual General Assembly (RSPO, 2019);

  56. Wilman, E. A. Market redirection leakage in the palm oil market. Ecol. Econ. 159, 226–234 (2019).

    Article  Google Scholar 

  57. Lyons-White, J. & Knight, A. T. Palm oil supply chain complexity impedes implimentation of corporate no-deforestation commitments. Glob. Environ. Change 50, 303–313 (2018).

    Article  Google Scholar 

  58. Wiloso, E. I., Bessou, C. & Heijungs, R. Methodological issues in comparative life cycle assessment: treatment options for empty fruit bunches in a palm oil system. Int. J. Life Cycle Assess. 20, 204–216 (2015).

    Article  CAS  Google Scholar 

  59. Neste-lead Project Verified 50% Methane Emission Reduction at Palm Oil Mills (Neste, 2018);

  60. Oilseeds: World Markets and Trade (USDA Foreign Agricultural Service, 2019).

  61. Murphy, D. J. The Status of Industrial Vegetable Oils from Genetically Modified Plants (European Chemicals Agency, 2012).

  62. Kostik, V., Memeti, S. & Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 4, 112–116 (2013).

    Google Scholar 

  63. Orsavova, J., Misurcova, L., Ambrozova, J., Vicha, R. & Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 16, 12871–12890 (2015).

    Article  CAS  Google Scholar 

  64. Jackson, F. L. & Longenecker, H. E. The fatty acids and glycerides of babassu oil. Oil Soap 21, 73–75 (1944).

    Article  CAS  Google Scholar 

  65. El Bassam, N. Handbook of Bioenergy Crops: A Complete Reference to Species, Development and Applications (Routledge, 2010).

  66. Aboubakar, X., Goudoum, A., Bébé, Y. & Mbofung, C. Optimization of Jatropha curcas pure vegetable oil production parameters for cooking energy. S. Afr. J. Chem. Eng. 24, 196–212 (2017).

    Google Scholar 

  67. Akbar, E., Yaakob, Z., Kamarudin, S. K., Ismail, M. & Salimon, J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur. J. Sci. Res. 29, 396–403 (2009).

    Google Scholar 

  68. Lam, M. K., Lee, K. T. & Mohamed, A. R. Life cycle assessment for the production of biodiesel: A case study in Malaysia for palm oil versus jatropha oil. Biofuels Bioprod. Biorefin. 3, 601–612 (2009).

    Article  CAS  Google Scholar 

  69. Lipp, M. & Anklam, E. Review of cocoa butter and alternative fats for use in chocolate—Part A. Compositional data. Food Chem. 62, 73–97 (1998).

    Article  CAS  Google Scholar 

  70. ul Hassan, Z. et al. in Oilseed Crops: Yield and Adaptations under Environmental Stress (ed. Ahmad, P.) 236–248 (John Wiley & Sons, 2017).

  71. Nayak, S. K. & Mishra, P. C. Investigation on jojoba biodiesel and producer gas in dual-fuel mode. Energy Sources A: Recov. Util. Environ. Eff. 38, 2265–2271 (2016).

    Article  CAS  Google Scholar 

  72. Addison, K. Oil Yields and Characteristics (2001).

  73. Gunstone, F. D. Fatty Acid and Lipid Chemistry 61–86 (Springer, 1996).

  74. Sander, K. & Murthy, G. S. Life cycle analysis of algae biofuels. Int. J. Life Cycle Assess. 15, 704–714 (2010).

    Article  CAS  Google Scholar 

  75. Borowitzka, M. A. & Borowitzka, L. J. Micro-algal Biotechnology (Cambridge Univ. Press, 1988).

  76. Abeln, F. & Chuck, C. J. Achieving a high-density oleaginous yeast culture: comparison of four processing strategies using Metschnikowia pulcherrima. Biotechnol. Bioeng. 116, 3200–3214 (2019).

    Article  CAS  Google Scholar 

  77. Thevenieau, F. & Nicaud, J.-M. Microorganisms as sources of oils. OCL 20, D603 (2013).

    Article  Google Scholar 

Download references


This research has been funded by the Industrial Biotechnology Catalyst (Innovate UK, BBSRC, EPSRC) (EP/N013522/1).

Author information

Authors and Affiliations



S.P. and C.J.C. conceived the initial idea, and developed the structure and concepts of the Perspective. S.P. and S.R. contributed to writing and researching the initial outline, with all authors involved in further content development and revisions. C.J.C. was awarded the initial funding.

Corresponding authors

Correspondence to Sophie Parsons or Christopher J. Chuck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsons, S., Raikova, S. & Chuck, C.J. The viability and desirability of replacing palm oil. Nat Sustain 3, 412–418 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing