The carbon opportunity cost of animal-sourced food production on land

Abstract

Extensive land uses to meet dietary preferences incur a ‘carbon opportunity cost’ given the potential for carbon sequestration through ecosystem restoration. Here we map the magnitude of this opportunity, finding that shifts in global food production to plant-based diets by 2050 could lead to sequestration of 332–547 GtCO2, equivalent to 99–163% of the CO2 emissions budget consistent with a 66% chance of limiting warming to 1.5 °C.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Distribution of carbon in potential vegetation in areas of present-day animal feed croplands and pastures combined for each 5 arcmin grid cell.
Fig. 2: Carbon opportunity cost of animal agriculture and atmospheric CO2 emissions grouped by national income tiers.
Fig. 3: Cumulative changes in terrestrial carbon from three dietary scenarios in 2050: BAU, ELC and VGN.

Data availability

Geospatial data for land-use area and carbon opportunity costs are available via the NYU Faculty Data Archive Spatial Data Repository, accessible online at https://doi.org/10.17609/q5pe-7r68.

References

  1. 1.

    IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO and UNEP, 2019).

  2. 2.

    Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1713820115 (2018).

  6. 6.

    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 992, 987–992 (2018).

    Article  Google Scholar 

  7. 7.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  Google Scholar 

  9. 9.

    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article  Google Scholar 

  10. 10.

    Batchelor, J. L., Ripple, W. J., Wilson, T. M. & Painter, L. E. Restoration of riparian areas following the removal of cattle in the northwestern great basin. Environ. Manage. 55, 930–942 (2014).

    Article  Google Scholar 

  11. 11.

    Sitters, J., Kimuyu, D. M., Young, T. P., Claeys, P. & Olde Venterink, H. Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).

    Article  Google Scholar 

  12. 12.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (FAO, 2012).

  13. 13.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 6736, 3–49 (2019).

    Google Scholar 

  14. 14.

    IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  15. 15.

    Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).

    Article  Google Scholar 

  16. 16.

    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. https://doi.org/10.1111/gcb.14321 (2018).

  17. 17.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Randerson, J. T. et al. Multicentury changes in ocean and land contributions to the climate–carbon feedback. Glob. Biogeochem. Cycles 29, 744–759 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  20. 20.

    Schmidinger, K. & Stehfest, E. Including CO2 implications of land occupation in LCAs-method and example for livestock products. Int. J. Life Cycle Assess. 17, 962–972 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  23. 23.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  24. 24.

    Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Article  Google Scholar 

  25. 25.

    Bouwman, A. F., Van der Hoek, K. W., Eickhout, B. & Soenario, I. Exploring changes in world ruminant production systems. Agric. Syst. 84, 121–153 (2005).

    Article  Google Scholar 

  26. 26.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Erb, K. H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat. Geosci. 9, 674–678 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Fetzel, T. et al. Quantification of uncertainties in global grazing systems assessment. Glob. Biogeochem. Cycles 31, 1089–1102 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Davis, W. R. Moomaw, J. S. Gerber and L. L. Sloat for their helpful comments.

Author information

Affiliations

Authors

Contributions

M.N.H. and H.H. developed the core research questions and conceptual approach of this study. M.N.H. and N.D.M. performed geospatial modelling and statistical analysis. M.N.H. developed the low-parameter model representation of literature 2050 BAU projections for the future land-use scenarios. All authors contributed to identifying and conceptually implementing the alternative 2050 dietary scenarios and contributed to the writing, editing and revising of the manuscript.

Corresponding author

Correspondence to Matthew N. Hayek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–6, Results and Figs. 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayek, M.N., Harwatt, H., Ripple, W.J. et al. The carbon opportunity cost of animal-sourced food production on land. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-00603-4

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing