Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anthropocene risk

Abstract

The potential consequences of cross-scale systemic environmental risks with global effects are increasing. We argue that current descriptions of globally connected systemic risk poorly capture the role of human–environment interactions. This creates a bias towards solutions that ignore the new realities of the Anthropocene. We develop an integrated concept of what we denote Anthropocene risk—that is, risks that: emerge from human-driven processes; interact with global social–ecological connectivity; and exhibit complex, cross-scale relationships. To illustrate this, we use four cases: moisture recycling teleconnections, aquaculture and stranded assets, biome migration in the Sahel, and sea-level rise and megacities. We discuss the implications of Anthropocene risk across several research frontiers, particularly in the context of supranational power, environmental and social externalities and possible future Anthropocene risk governance. We conclude that decision makers must navigate this new epoch with new tools, and that Anthropocene risk contributes conceptual guidance towards a more sustainable and just future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual diagram of how Anthropocene risk interacts with more traditional notions of risk.
Fig. 2: Harvesting and imports of palm oil for the period 1961 to 2011.
Fig. 3: System diagrams.

References

  1. 1.

    Frank, A. B. et al. Dealing with femtorisks in international relations. Proc. Natl Acad. Sci. USA 111, 17356–17362 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Walker, B. et al. Looming global-scale failures and missing institutions. Science 325, 1345–1346 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    Homer-Dixon, T. et al. Synchronous failure: the emerging causal architecture of global crisis. Ecol. Soc. 20, 6 (2015).

    Article  Google Scholar 

  4. 4.

    Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Galaz, V. et al. Global governance dimensions of globally networked risks: the state of the art in social science research. Risk Hazards Crisis Publ. Policy 8, 4–27 (2017).

    Article  Google Scholar 

  6. 6.

    Galaz, V., Crona, B., Dauriach, A., Scholtens, B. & Steffen, W. Finance and the Earth system—exploring the links between financial actors and non-linear changes in the climate system. Glob. Environ. Change 53, 296–302 (2018).

    Article  Google Scholar 

  7. 7.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A. & Windawi, A. J. The emergence of global systemic risk. Annu. Rev. Sociol. 41, 65–85 (2015).

    Article  Google Scholar 

  9. 9.

    Helbing, D. Globally networked risks and how to respond. Nature 497, 51–59 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 7, 28–37 (2017).

    Article  Google Scholar 

  11. 11.

    The Global Risks Report 2018 13th edn (World Economic Forum, 2018).

  12. 12.

    Hamm, B. The study of futures, and the analysis of power. Futures 42, 1007–1018 (2010).

    Article  Google Scholar 

  13. 13.

    Hamann, M. et al. Inequality and the biosphere. Annu. Rev. Environ. Resour. 43, 61–83 (2018).

    Article  Google Scholar 

  14. 14.

    Kabeer, N. in Challenging Inequalities: Pathways to a Just World 55–58 (ISSC, IDS and UNESCO, 2016).

  15. 15.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  16. 16.

    Sterner, T. et al. Policy design for the Anthropocene. Nat. Sustain. 2, 14–21 (2019).

    Article  Google Scholar 

  17. 17.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  19. 19.

    Byravan, S. & Rajan, S. C. The ethical implications of sea-level rise due to climate change. Ethics Int. Aff. 24, 239–260 (2010).

    Article  Google Scholar 

  20. 20.

    Mann, C. C. 1493: Uncovering the New World Columbus Created (Knopf Doubleday, 2011).

  21. 21.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Eriksson, H. et al. Contagious exploitation of marine resources. Front. Ecol. Environ. 13, 435–440 (2015).

    Article  Google Scholar 

  23. 23.

    Levin, S. et al. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).

    Article  Google Scholar 

  24. 24.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  Article  Google Scholar 

  25. 25.

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  26. 26.

    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).

    Google Scholar 

  27. 27.

    de Vrese, P., Hagemann, S. & Claussen, M. Asian irrigation, African rain: remote impacts of irrigation. Geophys. Res. Lett. 43, 3737–3745 (2016).

    Article  Google Scholar 

  28. 28.

    Mortimore, M. J. & Adams, W. M. Farmer adaptation, change and ‘crisis’ in the Sahel. Glob. Environ. Change 11, 49–57 (2001).

    Article  Google Scholar 

  29. 29.

    Gharibvand, H. K., Azadi, H. & Witlox, F. Exploring appropriate livelihood alternatives for sustainable rangeland management. Rangel. J. 37, 345–356 (2015).

    Article  Google Scholar 

  30. 30.

    Lade, S. J., Haider, L. J., Engström, G. & Schlüter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).

    Article  Google Scholar 

  31. 31.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Caldecott, B., Howarth, N. & McSharry, P. Stranded Assets in Agriculture: Protecting Value from Environment-Related Risks (Smith School of Enterprise and the Environment, University of Oxford, 2013).

  33. 33.

    Tran, P. & Shaw, R. Towards an integrated approach of disaster and environment management: a case study of Thua Thien Hue province, central Viet Nam. Environ. Hazards 7, 271–282 (2007).

    Article  Google Scholar 

  34. 34.

    Henriksson, P. J. G. et al. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain. Sci. 13, 1105–1120 (2018).

    Article  Google Scholar 

  35. 35.

    Leung, T. L. F. & Bates, A. E. More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J. Appl. Ecol. 50, 215–222 (2013).

    Article  Google Scholar 

  36. 36.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Higgins, P. A. T. & Harte, J. Biophysical and biogeochemical responses to climate change depend on dispersal and migration. BioScience 56, 407–417 (2006).

    Article  Google Scholar 

  38. 38.

    Cottrell, R. S. et al. Food production shocks across land and sea. Nat. Sustain. 2, 130–137 (2019).

    Article  Google Scholar 

  39. 39.

    Sultan, B. et al. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 8, 014040 (2013).

    Article  Google Scholar 

  40. 40.

    Brooks, N. Drought in the African Sahel: Long-Term Perspectives and Future Prospects Working Paper No. 61 (Tyndall Centre for Climate Change Research, 2004).

  41. 41.

    Breshears, D. D., López-Hoffman, L. & Graumlich, L. J. When ecosystem services crash: preparing for big, fast, patchy climate change. Ambio 40, 256–263 (2011).

    Article  Google Scholar 

  42. 42.

    McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).

    Article  Google Scholar 

  43. 43.

    Wuebbles, D. J., Fahey, D. W. & Hibbard, K. A. Climate Science Special Report: Fourth National Climate Assessment Vol. 1 (US Global Change Research Program, 2017).

  44. 44.

    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Church, J. A. et al. Sea-level rise by 2100. Science 342, 1445 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    Goodell, J. The Water Will Come: Rising Seas, Sinking Cities, and the Remaking of the Civilized World (Little, Brown and Company, 2017).

  47. 47.

    Werrell, C. E. & Femia, F. Climate Change, the erosion of state sovereignty, and world order. Brown J. World Aff. 22, 221–235 (2015).

    Google Scholar 

  48. 48.

    Linkov, I. et al. Tiered approach to resilience assessment. Risk Anal. 53, 1772–1780 (2018).

    Article  Google Scholar 

  49. 49.

    Biermann, F. et al. Earth system governance: a research framework. Int. Environ. Agreem. Polit. Law Econ. 10, 277–298 (2010).

    Google Scholar 

  50. 50.

    Kotzé, L. J. Rethinking global environmental law and governance in the Anthropocene. J. Energy Nat. Resour. Law 32, 121–156 (2014).

    Article  Google Scholar 

  51. 51.

    Hancock, A.-M. When multiplication doesn’t equal quick addition: examining intersectionality as a research paradigm. Perspect. Politics 5, 63–79 (2007).

    Article  Google Scholar 

  52. 52.

    Di Chiro, G. in The Oxford Handbook of Environmental Political Theory (eds Gabrielson, T. et al.) 1–23 (Oxford Univ. Press, 2016).

  53. 53.

    Inoue, C. Y. A. & Moreira, P. F. Many worlds, many nature(s), one planet: indigenous knowledge in the Anthropocene. Rev. Bras. Polít. Int. 59, e009 (2016).

    Google Scholar 

  54. 54.

    Romm, N. R. A. in Balancing Individualism and Collectivism: Social and Environmental Justice (eds McIntyre-Mills, J. et al.) 1–17 (Springer, 2018).

  55. 55.

    Österblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, e0127533 (2015).

    Article  Google Scholar 

  56. 56.

    Blasiak, R., Jouffray, J.-B., Wabnitz, C. C. C., Sundström, E. & Österblom, H. Corporate control and global governance of marine genetic resources. Sci. Adv. 4, eaar5237 (2018).

    Article  Google Scholar 

  57. 57.

    Renwick, A., Islam, M. M. & Thomson, S. Power in global agriculture: economics, politics, and natural resources. Int. J. Agric. Manag. 2, 31–48 (2012).

    Article  Google Scholar 

  58. 58.

    Varkkey, H. Oil palm plantations and transboundary haze: patronage networks and land licensing in Indonesia’s peatlands. Wetlands 33, 679–690 (2013).

    Article  Google Scholar 

  59. 59.

    Marschke, M. & Vandergeest, P. Slavery scandals: unpacking labour challenges and policy responses within the off-shore fisheries sector. Mar. Policy 68, 39–46 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Pintauro and A. Sundin for their support in the development of the figures in this manuscript. P.W.K. was partly funded by the GRAID programme, V.G. was partly funded by the Beijer Institute of Ecological Economics programme ‘Governance, Complexity, and Technology’ and S.E.C. was partly funded by European Research Council Advanced Grant 2016, Earth Resilience in the Anthropocene Project 743080.

Author information

Affiliations

Authors

Contributions

The design and development of the manuscript were co-led by authors P.W.K., V.G., M.D., N.M., C.F., M.N. and S.E.C. The writing and revision process was led primarily by P.W.K.

Corresponding author

Correspondence to Patrick W. Keys.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keys, P.W., Galaz, V., Dyer, M. et al. Anthropocene risk. Nat Sustain 2, 667–673 (2019). https://doi.org/10.1038/s41893-019-0327-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing