Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Our footprint on Antarctica competes with nature for rare ice-free land

Abstract

Construction and operation of research stations present the most pronounced human impacts on the Antarctic continent across a wide range of environmental values. Despite Antarctic Treaty Parties committing themselves to comprehensive protection of the environment, data on the spatial extent of impacts from their activities have been limited. To quantify this, we examined the area of building and ground disturbance across the entire continent using geographic information system mapping of satellite imagery. Here, we report the footprint of all buildings to be >390,000 m2, with an additional disturbance footprint of >5,200,000 m2 just on ice-free land. These create a visual footprint similar in size to the total ice-free area of Antarctica, and impact over half of all large coastal ice-free areas. Our data demonstrate that human impacts are disproportionately concentrated in some of the most sensitive environments, with consequential implications for conservation management. This high-resolution measurement of the extent of infrastructure across the continent can be used to inform management decisions to balance sustainable scientific use and environmental protection of the Antarctic environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of the building footprint on Antarctica.
Fig. 2: Modelling of the visual footprint of Antarctic infrastructure.

Similar content being viewed by others

Data availability

The data associated with this manuscript are stored and accessible at the Australian Antarctic Data Centre (https://doi.org/10.4225/15/5ae7af0fb9fcf). A summarized excerpt of the GIS data is also available in Supplementary Table 1.

References

  1. Protocol on Environmental Protection to the Antarctic Treaty (Antarctic Treaty Secretariat, 1991).

  2. Tin, T. et al. Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33 (2009).

    Article  Google Scholar 

  3. Chown, S. L. et al. Challenges to the future conservation of the Antarctic. Science 337, 158–159 (2012).

    Article  CAS  Google Scholar 

  4. Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014).

    Article  Google Scholar 

  5. Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article  CAS  Google Scholar 

  6. Coetzee, B. W. T., Convey, P. & Chown, S. L. Expanding the protected area network in Antarctica is urgent and readily achievable. Conserv. Lett. 10, 670–680 (2017).

    Article  Google Scholar 

  7. Chown, S. Polar collaborations are key to successful policies. Nature 558, 163 (2018).

    Article  CAS  Google Scholar 

  8. Brooks, S. T., Jabour, J. & Bergstrom, D. M. What is ‘footprint’ in Antarctica: proposing a set of definitions. Antarct. Sci. 30, 227–235 (2018).

    Article  Google Scholar 

  9. Poland, J. S., Riddle, M. J. & Zeeb, B. A. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Rec. 39, 369–383 (2003).

    Article  Google Scholar 

  10. Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012).

    Article  Google Scholar 

  11. Rintoul, S. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    Article  CAS  Google Scholar 

  12. Kennicutt, M. et al. Delivering 21st century Antarctic and Southern Ocean science. Antarct. Sci. 28, 407–423 (2016).

    Article  Google Scholar 

  13. Kennicutt, M. C. et al. Polar research: six priorities for Antarctic science. Nature 512, 23–25 (2014).

    Article  CAS  Google Scholar 

  14. The Antarctic Treaty (Antarctic Treaty Secretariat, 1959).

  15. Jabour, J. in Health of Antarctic Wildlife: A Challenge for Science and Policy (eds Kerry, K. R. & Riddle, M.) 211–229 (Springer, 2009).

  16. Convey, P. & Stevens, M. I. Antarctic biodiversity. Science 317, 1877–1878 (2007).

    Article  CAS  Google Scholar 

  17. Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    Article  CAS  Google Scholar 

  18. Bergstrom, D. M., Hodgson, D. A. & Convey, P. in Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator (eds Bergstrom, D. M., Convey, P. & Huiskes, A. H. L.) 15–33 (Springer, 2006).

  19. O’Neill, T. A. Protection of Antarctic soil environments: a review of the current issues and future challenges for the Environmental Protocol. Environ. Sci. Policy 76, 153–164 (2017).

    Article  Google Scholar 

  20. Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22, 836–840 (2016).

    Article  Google Scholar 

  21. Burton-Johnson, A., Black, M., Fretwell, P. T. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016).

    Article  Google Scholar 

  22. Summerson, R. The Protection of Wilderness and Aesthetic Values in Antarctica. PhD thesis, Univ. Melbourne (2013).

  23. COMNAP Antarctic Facilities List 31 March 2017 (Council of Managers of National Antarctic Programs, 2017).

  24. Brooks, S. T. Developing a standardised approach to measuring the environmental footprint of Antarctic research stations. J. Environ. Assess. Policy Manage. 16, 1450037 (2014).

    Article  Google Scholar 

  25. Wilson, K. J., Taylor, R. H. & Barton, K. J. in Antarctic Ecosystems (eds Kerry, K. R. & Hempel, G.) 183–190 (Springer, 1990).

  26. Aislabie, J., Ryburn, J. & Sarmah, A. Hexadecane mineralization activity in ornithogenic soil from Seabee Hook, Cape Hallett, Antarctica. Polar Biol. 31, 421–428 (2008).

    Article  Google Scholar 

  27. Ayres, E. et al. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conserv. Biol. 22, 1544–1551 (2008).

    Article  Google Scholar 

  28. Tejedo, P. et al. Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. Antarct. Sci. 21, 229–236 (2009).

    Article  Google Scholar 

  29. Tejedo, P. et al. Trampling on maritime Antarctica: can soil ecosystems be effectively protected through existing codes of conduct?. Polar Res. 31, 10888 (2012).

    Article  Google Scholar 

  30. Summerson, R. & Bishop, I. D. The impact of human activities on wilderness and aesthetic values in Antarctica. Polar Res. 31, 10858 (2012).

    Article  Google Scholar 

  31. O’Neill, T. A., Balks, M. R. & López-Martínez, J. Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarct. Sci. 25, 514–530 (2013).

    Article  Google Scholar 

  32. Campbell, I. B., Claridge, G. G. C. & Balks, M. R. The effect of human activities on moisture content of soils and underlying permafrost from the McMurdo Sound region, Antarctica. Antarct. Sci. 6, 307–314 (1994).

    Article  Google Scholar 

  33. O’Neill, T. A., Balks, M. R. & López-Martínez, J. Ross Island recreational walking tracks: relationships between soil physiochemical properties and track usage. Polar Rec. 51, 444–455 (2014).

    Article  Google Scholar 

  34. Coetzee, B. W. & Chown, S. L. A meta-analysis of human disturbance impacts on Antarctic wildlife. Biol. Rev. Camb. Phil. Soc. 91, 578–596 (2016).

    Article  Google Scholar 

  35. Klein, A. G. et al. The historical development of McMurdo Station, Antarctica, an environmental perspective. Polar Geogr. 31, 119–144 (2008).

    Article  Google Scholar 

  36. Campbell, I. B., Claridge, G. G. C. & Balks, M. R. Short- and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Rec. 34, 15–24 (1998).

    Article  Google Scholar 

  37. Southwell, C. et al. Spatially extensive standardized surveys reveal widespread, multi-decadal increase in East Antarctic Adélie penguin populations. PLoS ONE 10, e0139877 (2015).

    Article  Google Scholar 

  38. Smith, R. L. Classification and ordination of cryptogamic communities in Wilkes Land, Continental Antarctica. Vegetatio 76, 155–166 (1988).

    Google Scholar 

  39. Pertierra, L. R., Hughes, K. A., Vega, G. C. & Olalla-Tarraga, M. A. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS ONE 12, e0168280 (2017).

    Article  Google Scholar 

  40. Hughes, K. A. How committed are we to monitoring human impacts in Antarctica? Environ. Res. Lett. 5, 041001 (2010).

    Article  Google Scholar 

  41. Kennicutt, M. C. II et al. Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environ. Res. Lett. 5, 034010 (2010).

    Article  Google Scholar 

  42. Convey, P., Hughes, K. A. & Tin, T. Continental governance and environmental management mechanisms under the Antarctic Treaty System: sufficient for the biodiversity challenges of this century? Biodiversity 13, 234–248 (2012).

    Article  Google Scholar 

  43. Walton, D. W. H. & Shears, J. The need for environmental monitoring in Antarctica: baselines, environmental impact assessments, accidents and footprints. Int. J. Environ. Anal. Chem. 55, 77–90 (1994).

    Article  CAS  Google Scholar 

  44. Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article  CAS  Google Scholar 

  45. Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).

    Article  Google Scholar 

  46. Headland, R. K. A Chronology of Antarctic Exploration: A Synopsis of Events and Activities from the Earliest Times until the International Polar Years, 2007–09 (Bernard Quaritch, 2009).

  47. Frankl, A., Zwertvaegher, A., Poesen, J. & Nyssen, J. Transferring Google Earth observations to GIS-software: example from gully erosion study. Int. J. Digit. Earth 6, 196–201 (2013).

    Article  Google Scholar 

  48. Wood, S. N. Generalized Additive Models: An Introduction With R (Chapman and Hall/CRC, 2017).

  49. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  50. Burnham, K. P. & Anderson, D. R. Kullback–Leibler information as a basis for strong inference in ecological studies. Wildl. Res. 28, 111–119 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Raymond for assistance with the statistical analysis. S.T.B. is supported by an Australian Government Research Training Program Scholarship. We also thank A. Terauds, E. McIvor, S. Chown and D. McLaren for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.T.B. and D.M.B. initiated the research. ​S.T.B. led the development, GIS mapping and analysis, and writing of the manuscript. All authors contributed to further conceptual and content development, interpretation of the data and drafting of the manuscript.

Corresponding author

Correspondence to Shaun T. Brooks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 2–3, Supplementary Figures 1–5

Supplementary Table 1

Disturbance footprint measurements for locations considered in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, S.T., Jabour, J., van den Hoff, J. et al. Our footprint on Antarctica competes with nature for rare ice-free land. Nat Sustain 2, 185–190 (2019). https://doi.org/10.1038/s41893-019-0237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0237-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing