Ecological intensification of agro-ecosystems, based on the optimization of ecological functions such as biological pest control, to replace agrochemical inputs is a promising route to reduce the ecological footprint of agriculture while maintaining commodity production. However, the performance of organic farming, often considered as a prototype of ecological intensification, in terms of pest control remains largely unknown. Here, using two distinct meta-analyses, we demonstrate that, compared to conventional cropping systems, (i) organic farming promotes overall biological pest control potential, (ii) organic farming has higher levels of overall pest infestations but (iii) that this effect strongly depends on the pest type. Our study shows that there are lower levels of pathogen infestation, similar levels of animal pest infestation and much higher levels of weed infestation in organic than in conventional systems. This study provides evidence that organic farming can enhance pest control and suggests that organic farming offers a way to reduce the use of synthetic pesticide for the management of animal pests and pathogens without increasing their levels of infestation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 14 December 2018

    In this Supplementary Information file originally published, the first equation in Methods was illegible; this has now been amended.


  1. 1.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

  2. 2.

    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. PNAS 110, 8399–8404 (2013).

  3. 3.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

  4. 4.

    Cassman, K. G. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

  5. 5.

    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).

  6. 6.

    Tittonell, P. Ecological intensification of agriculture—sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).

  7. 7.

    IFOAM. The IFOAM Norms for Organic Production and Processing. Version 2005 (International Federation of Organic Agriculture Movements, 2006).

  8. 8.

    Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).

  9. 9.

    Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).

  10. 10.

    Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).

  11. 11.

    Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).

  12. 12.

    Kennedy, M. C. et al. A global quantitative synthesis of local and landscape effects on wild bee polliniators in agrosystems. Ecol. Lett. 16, 584–599 (2013).

  13. 13.

    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).

  14. 14.

    Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 32, 68–80 (2017).

  15. 15.

    Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J. Appl. Ecol. 42, 261–269 (2005).

  16. 16.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

  17. 17.

    Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).

  18. 18.

    Garratt, M. P. D., Wright, D. J. & Leather, S. R. The effects of farming system and fertilisers on pests and natural enemies: a synthesis of current research. Agric., Ecosyst. Environ. 141, 261–270 (2011).

  19. 19.

    Gabriel, D. et al. Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 13, 858–869 (2010).

  20. 20.

    Koss, A. M., Jensen, A. S., Schreiber, A., Pike, K. S. & Snyder, W. E. Comparison of predator and pest communities in Washington potato fields treated with broad-spectrum, selective, or organic insecticides. Environ. Entomol. 34, 87–95 (2005).

  21. 21.

    Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G. & Moreno, C. R. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 573–592 (2009).

  22. 22.

    Crowder, D. W., Northfield, T. D., Strand, M. R. & Snyder, W. E. Organic agriculture promotes evenness and natural pest control. Nature 466, 109–112 (2010).

  23. 23.

    Darnhofer, I., Schneeberger, W. & Freyer, B. Converting or not converting to organic farming in Austria: farmer types and their rationale. Agric. Human. Values 22, 39–52 (2005).

  24. 24.

    Seufert, V., Ramankutty, N. & Mayerhofer, T. What is this thing called organic?—How organic farming is codified in regulations. Food Policy 68, 10–20 (2017).

  25. 25.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

  26. 26.

    Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).

  27. 27.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

  28. 28.

    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

  29. 29.

    Finke, D. L. & Denno, R. F. Predator diversity dampens trophic cascades. Nature 429, 407–410 (2004).

  30. 30.

    Cardinale, B. J., Harvey, C. T., Gross, K. & Ives, A. R. Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol. Lett. 6, 857–865 (2003).

  31. 31.

    Schneider, M. K. et al. Gains to species diversity in organically farmed fields are not propagated at the farm level. Nat. Commun. 5, 4151 (2014).

  32. 32.

    Mundt, C. C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410 (2002).

  33. 33.

    Van Bruggen, A. H. C. & Finckh, M. R. Plant diseases and management approaches in organic farming systems. Annu. Rev. Phytopathol. 54, 25–54 (2016).

  34. 34.

    Norton, L. et al. Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric. Ecosyst. Environ. 129, 221–227 (2009).

  35. 35.

    Iverson, A. L. et al. Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis. J. Appl. Ecol. 51, 1593–1602 (2014).

  36. 36.

    Denno, R. F., McClure, M. S. & Ott, J. R. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu. Rev. Entomol. 40, 297–331 (1995).

  37. 37.

    Kaplan, I. & Denno, R. F. Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol. Lett. 10, 977–994 (2007).

  38. 38.

    Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).

  39. 39.

    Edwards-Jones, O. H. The origin and hazard of inputs to crop protection in organic farming systems: are they sustainable? Agric. Syst. 67, 31–47 (2001).

  40. 40.

    Drews, S., Neuhoff, D. & Köpke, U. Weed suppression ability of three winter wheat varieties at different row spacing under organic farming conditions. Weed Res. 49, 526–533 (2009).

  41. 41.

    Requier, F. et al. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890 (2015).

  42. 42.

    Gaba, S., Gabriel, E., Chadø euf, J., Bonneu, F. & Bretagnolle, V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci. Rep. 6, 30112 (2016).

  43. 43.

    Muneret, L., Thiéry, D., Joubard, B. & Rusch, A. Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. J. Appl. Ecol. 55, 1516–1525 (2018).

  44. 44.

    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

  45. 45.

    Mehrabi, Z. The conventional versus alternative agricultural divide: a response to Garibaldi et al. Trends Ecol. Evol. 32, 720–721 (2017).

  46. 46.

    van Bniggen, A. H. & Termorskuizen, A. J. Integrated approaches to root disease management in organic farming systems. Australas. Plant Pathol. 32, 141–156 (2003).

  47. 47.

    Stavi, I., Bel, G. & Zaady, E. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agron. Sustain. Dev. 36, 1–12 (2016).

  48. 48.

    Briar, S. S., Wichman, D. & Reddy, G. V. in Organic Farming for Sustainable Agriculture 107–122 (Springer, Switzerland, 2016).

  49. 49.

    Hedges, L. V. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, Orlando, FL, 1985).

  50. 50.

    Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

  51. 51.

    Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press: Princeton, NJ, 2013).

  52. 52.

    Cooper, H., Hedges, L. V. & Valentine, J. C. The Handbook of Research Synthesis and Meta-analysis (Russell Sage Foundation, New York, 2009).

  53. 53.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

  54. 54.

    Borenstein, M., Higgins, J. P. T., Hedges, L. V. & Rothstein, H. R. Basics of meta-analysis: I 2 is not an absolute measure of heterogeneity. Res. Synth. Methods 8, 5–18 (2017).

  55. 55.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

  56. 56.

    R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2016).

Download references


We are grateful to the authors of primary studies who provided us with additional data and to B. Castagneyrol and D. Makowski for helpful discussions and relevant advice about the analyses. We thank four anonymous reviewers for their careful reading of our manuscript and their many insightful comments. We also thank T. Nesme for helpful discussions and M. Desailly for her help in collecting the literature. This research was funded by the Région Aquitaine (REGUL project), the Région Bretagne (ARANEAE) and the Agence Française pour la Biodiversité (ex-ONEMA), and the joint call ‘Biodiversité-Ecophyto’ between Ecophyto and the French National Foundation for Research on Biodiversity (SOLUTION project). This study was also supported by the FP7-PEOPLE-2013-IRSES fund (project APHIWEB, grant number 611810). This study has been carried out in the framework of the Cluster of Excellence COTE.

Author information


  1. INRA, UMR 1065 Santé et Agroécologie du Vignoble, ISVV, Université de Bordeaux, Bordeaux Sciences Agro, Villenave d’Ornon , France

    • Lucile Muneret
    • , Denis Thiéry
    •  & Adrien Rusch
  2. Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada

    • Matthew Mitchell
  3. Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany

    • Verena Seufert
  4. INRA, UMR BAGAP, INRA-ESA-Agrocampus Ouest, Rennes, France

    • Stéphanie Aviron
  5. Université de Rennes 1, UMR Ecobio, Campus de Beaulieu, Rennes , France

    • El Aziz Djoudi
    •  & Julien Pétillon
  6. INRA, UMR IGEPP, Agrocampus Ouest, Université de Rennes 1, Université Bretagne-Loire, Rennes, France

    • El Aziz Djoudi
    •  & Manuel Plantegenest


  1. Search for Lucile Muneret in:

  2. Search for Matthew Mitchell in:

  3. Search for Verena Seufert in:

  4. Search for Stéphanie Aviron in:

  5. Search for El Aziz Djoudi in:

  6. Search for Julien Pétillon in:

  7. Search for Manuel Plantegenest in:

  8. Search for Denis Thiéry in:

  9. Search for Adrien Rusch in:


L.M., E.A.D., S.A., J.P., M.P., D.T. and A.R. conceived the work and designed the study. M.M. and V.S. contributed to data analysis and interpretation of the results. L.M. and A.R. collected the data, analysed the data, interpreted the results and led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Adrien Rusch.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1-9, Supplementary Tables 2-14, Supplementary Discussion, Supplementary Methods, Supplementary References 1-19

  2. Table S1

    List of the studies included in the meta-analyses

About this article

Publication history




Issue Date