Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The emergence of pesticide-free crop production systems in Europe

Abstract

Pesticide risk reduction is a priority in European agricultural policies, but how to reach these targets remains an open question. Against this background, a novel approach for transforming pest management practices is currently gaining momentum in Europe: pesticide-free, non-organic production systems. These involve the non-use of pesticides in parts of crop rotations or entire crop rotations but do not comply with other organic farming regulations. Here we present insights into the first real-world examples of such systems, in Switzerland and Germany. In both countries, pesticide-free production was initiated jointly by farmers and downstream actors some years ago. This was followed by the launch of public support schemes in 2023. We discuss the functioning and impacts of these examples, as well as farmers’ adoption behaviour. Compared with organic production, the reviewed pesticide-free production schemes are more flexible and have lower adoption hurdles for farmers, as well as lower yield losses. These characteristics facilitate the large-scale adoption of pesticide-free production systems. Moreover, pesticide-free can become a clear-cut and simple production standard. Pesticide-free production can thus be a disruptive approach to create a tangible ‘third way’ between conventional and organic production. However, there are various adoption barriers and pesticide-free production would not currently be profitable without support in most cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defining pesticide-free cropping systems.
Fig. 2: Signalling of pesticide-free production systems at the farm and product levels in Switzerland and Germany.

Similar content being viewed by others

References

  1. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Article  PubMed  Google Scholar 

  2. Möhring, N. et al. Pathways for advancing pesticide policies. Nat. Food 1, 535–540 (2020).

    Article  PubMed  Google Scholar 

  3. Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).

    Article  ADS  CAS  Google Scholar 

  4. Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).

    Article  ADS  Google Scholar 

  5. Pimentel, D. & Burgess, M. in Integrated Pest Management (eds Pimentel, D. & Peshin, R.) 47–71 (Springer, 2014).

  6. Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).

    Article  PubMed  Google Scholar 

  7. Schebesta, H. & Candel, J. J. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 1, 586–588 (2020).

    Article  PubMed  Google Scholar 

  8. Sustainable Use of Pesticides (European Commission, 2022); https://food.ec.europa.eu/plants/pesticides/sustainable-use-pesticides_en

  9. Finger, R. No pesticide-free Switzerland. Nat. Plants 7, 1324–1325 (2021).

    Article  PubMed  Google Scholar 

  10. Schneider, K., Barreiro-Hurle, J. & Rodriguez-Cerezo, E. Pesticide reduction amidst food and feed security concerns in Europe. Nat. Food 4, 746–750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Willetts, L. et al. Health in global biodiversity governance: what is next? Lancet 401, 533–536 (2023).

    Article  PubMed  Google Scholar 

  12. Möhring, N. et al. Successful implementation of global targets to reduce nutrient and pesticide pollution requires suitable indicators. Nat. Ecol. Evol. 7, 1556–1559 (2023).

    Article  PubMed  Google Scholar 

  13. Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deguine, J. P. et al. Agroecological crop protection for sustainable agriculture. Adv. Agron. 178, 1–59 (2023).

    Article  Google Scholar 

  16. Lefebvre, M., Langrell, S. R. & Gomez-y-Paloma, S. Incentives and policies for integrated pest management in Europe: a review. Agron. Sustain. Dev. 35, 27–45 (2015).

    Article  CAS  Google Scholar 

  17. Deguine, J. P. et al. Integrated pest management: good intentions, hard realities—a review. Agron. Sustain. Dev. 41, 38 (2021).

    Article  Google Scholar 

  18. Möhring, N. & Finger, R. Pesticide-free but not organic: adoption of a large-scale wheat production standard in Switzerland. Food Policy 106, 102188 (2022).

    Article  Google Scholar 

  19. Jacquet, F. et al. Pesticide-free agriculture as a new paradigm for research. Agron. Sustain. Dev. 42, 8 (2022).

    Article  Google Scholar 

  20. Mora, O., Berne, J. A., Drouet, J. L., Le Mouël, C. & Meunier, C. Prospective: Agriculture Européenne sans Pesticides Chimiques en 2050 (INRAE, 2023); https://hal.inrae.fr/hal-04147168v1/document

  21. Pergner, I. & Lippert, C. On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer—a review. Agron. Sustain. Dev. 43, 24 (2023).

    Article  Google Scholar 

  22. Nazarko, O. M., Van Acker, R. C., Entz, M. H., Schoofs, A. & Martens, G. Pesticide free production of field crops: results of an on‐farm pilot project. Agron. J. 95, 1262–1273 (2003).

    Article  Google Scholar 

  23. Nazarko, O. M., Van Acker, R. C., Entz, M. H., Schoofs, A. & Martens, G. Pesticide free production: characteristics of farms and farmers participating in a pesticide use reduction pilot project in Manitoba, Canada. Renew. Agric. Food Syst. 19, 4–14 (2004).

    Article  Google Scholar 

  24. Saile, M. et al. Weed control in a pesticide‐free farming system with mineral fertilisers. Weed Res. 63, 196–206 (2023).

    Article  CAS  Google Scholar 

  25. Zimmermann, B. et al. Mineral–ecological cropping systems—a new approach to improve ecosystem services by farming without chemical synthetic plant protection. Agronomy 11, 1710 (2021).

    Article  Google Scholar 

  26. Koch, M. A. et al. Reducing pesticides without organic certification? Potentials and limits of an intermediate form of agricultural production. Cogent Food Agric. 9, 2202892 (2023).

    Article  Google Scholar 

  27. Mack, G., Finger, R., Ammann, J. & El Benni, N. Modelling policies towards pesticide-free agricultural production systems. Agric. Syst. 207, 103642 (2023).

    Article  Google Scholar 

  28. FAOSTAT: FAO Data on Agricultural Production (FAO, 2023); https://www.fao.org/faostat/en/#data/RP

  29. Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).

    Article  PubMed  Google Scholar 

  30. Finger, R. On the definition of pesticide-free crop production systems. Agric. Syst. 214, 103844 (2024).

    Article  Google Scholar 

  31. Möhring, N., Huber, R. & Finger, R. Combining ex-ante and ex-post assessments to support the sustainable transformation of agriculture: the case of Swiss pesticide-free wheat production. Q Open 3, qoac022 (2023).

    Article  Google Scholar 

  32. IP-SUISSE Weizen ohne Pestizide (IP Suisse, 2023); https://www.ipsuisse.ch/produzenten/pflanzenbau/#toggle-id-1

  33. Runge, T. et al. Implementation of eco‐schemes in fifteen European Union member states. EuroChoices 21, 19–27 (2022).

    Article  Google Scholar 

  34. BMEL Umsetzung der Gemeinsamen Agrarpolitik der Europäischen Union 2023 in Deutschland (BMEL, 2023); https://www.bmel.de/SharedDocs/Downloads/DE/Broschueren/gap-2023.pdf?__blob=publicationFile&v=2

  35. Röder, N. et al. Ausgestaltung der Ökoregelungen in Deutschland-Stellungnahmen für das BMEL: Band 2-Schätzung der Inanspruchnahme der Regelungen auf Basis des Kabinettsentwurfes des GAPDZG Thünen Working Paper No. 180, Vol. 2 (Thünen-Institut, Braunschweig, 2021).

  36. Lehmann, N. GAP 2023: Diese Öko-Regelungen Haben Landwirte 2023 Beantragt—und Diese Nicht (Agrarheute, 2023); https://www.agrarheute.com/management/betriebsfuehrung/oeko-regelungen-eco-schemes-landwirte-2023-beantragt-607530

  37. Bundesregierung Antwort der Bundesregierung auf die Kleine Anfrage der Abgeordneten Uwe Schulz, Stephan Protschka, Peter Felser, weiterer Abgeordneter und der Fraktion der AfD Drucksache 20/7340 (Federal Government of Germany, Berlin, 2023); https://dserver.bundestag.de/btd/20/075/2007553.pdf

  38. Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, eaav0294 (2018).

    Article  ADS  PubMed  Google Scholar 

  39. IP Suisse Anbau von Pflanzenschutz-Mittelfreiem Winterweizen (IP Suisse, 2023); https://www.ipsuisse.ch/wp-content/plugins/pdfjs-viewer-shortcode/pdfjs/web/viewer.php?file=https://www.ipsuisse.ch/wp-content/uploads/IPS_Anbau_Winterweizen_d_220201_final.pdf&attachment_id=&dButton=true&pButton=true&oButton=false&sButton=true#zoom=auto&pagemode=none&_wpnonce=745b232549

  40. Melander, B., Rasmussen, I. A. & Bàrberi, P. Integrating physical and cultural methods of weed control—examples from European research. Weed Sci. 53, 369–381 (2005).

    Article  CAS  Google Scholar 

  41. Rusch, A., Valantin-Morison, M., Sarthou, J.P. & Roger-Estrade, J. in Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed Williams, I.) 415–448 (Springer, 2010).

  42. Verheggen, F. et al. Producing sugar beets without neonicotinoids: an evaluation of alternatives for the management of viruses-transmitting aphids. Entomol. Gen. 42, 491–498 (2022).

    Article  Google Scholar 

  43. Bertschi, M. Herbizidloser Weizenanbau Versuchsserie Erntejahre 2019–2021 (Forum Ackerbau, 2023); https://www.forumackerbau.ch/fileadmin/forumackerbau.ch/Versuche_Weizen/Dreijaehrige_Resultate_Weizenanbau_herbizidlos.pdf

  44. Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Böcker, T., Möhring, N. & Finger, R. Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production. Agric. Syst. 173, 378–392 (2019).

    Article  Google Scholar 

  46. Garcia, V., Möhring, N., Wang, Y. & Finger, R. Risk perceptions, preferences and the adoption dynamics of pesticide-free production. J. Agric. Resour. Econ. 49, 102–123 (2024).

    Google Scholar 

  47. Chatzimichael, K., Genius, M. & Tzouvelekas, V. Pesticide use, health impairments and economic losses under rational farmers behavior. Am. J. Agric. Econ. 104, 765–790 (2022).

    Article  Google Scholar 

  48. Wang, Y., Möhring, N. & Finger, R. When my neighbors matter: spillover effects in the adoption of large-scale pesticide-free wheat production. Agric. Econ. 54, 256–273 (2023).

    Article  Google Scholar 

  49. Dessart, F. J., Barreiro-Hurlé, J. & Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: a policy-oriented review. Eur. Rev. Agric. Econ. 46, 417–471 (2019).

    Article  Google Scholar 

  50. Supermarkets: Stop the Toxic Harvest! (Foodwatch, 2023); https://www.foodwatch.org/en/supermarkets-stop-the-toxic-harvest. Petition was launched 10 October 2023; last accessed 25 October 2023.

  51. Commission Response to Council Decision (EU) 2022/2572 of 19 December 2022 Requesting That the Commission Submit a Study Complementing the Impact Assessment of the Proposal for a Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115 (European Commission, 2022).

  52. Koch, J. Höhere Ökoregelungen: So viel Geld soll es pro Hektar mehr geben (Agrarheute, 2023); https://www.agrarheute.com/politik/hoehere-oekoregelungen-so-viel-geld-pro-hektar-mehr-geben-613573

  53. Finger, R. & Möhring, N. The adoption of pesticide-free wheat production and farmers’ perceptions of its environmental and health effects. Ecol. Econ. 198, 107463 (2022).

    Article  Google Scholar 

  54. Ewert, F., Baatz, R. & Finger, R. Agroecology for a sustainable agriculture and food system—from local solutions to large-scale adoption. Annu. Rev. Resour. Econ. 15, 351–381 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Finger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Jesus Barreiro-Hurle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–H.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finger, R., Möhring, N. The emergence of pesticide-free crop production systems in Europe. Nat. Plants 10, 360–366 (2024). https://doi.org/10.1038/s41477-024-01650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01650-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene