Abstract
Two-dimensional semiconductors have great potential in high-performance electronic devices. However, the common way of contacting them with metals to inject charge carriers results in contact resistance. We propose a junction-free field-effect transistor consisting of semiconducting monolayer blue phosphorene as channel material (with high carrier mobility) and metallic bilayer blue phosphorene as electrodes. The junction-free design minimizes the contact resistance. Employing first-principles calculations along with the non-equilibrium Green’s function method, we demonstrate a high Ion/Ioff ratio of up to 2.6 × 104 and a remarkable transconductance of up to 811 μS/μm.
Introduction
Two-dimensional materials currently receive immense attention for application in next-generation electronic devices, particularly as channel materials in field effect transistors (FETs)1,2,3,4,5. Despite an ultrahigh carrier mobility of ~105 cm2V−1s−1, graphene cannot be used as channel material due to its zero bandgap nature. Monolayer transition metal dichalcogenides possess (direct) bandgaps of 1–2 eV6,7,8,9 and provide high Ion/Ioff ratios of ~105–108 10,11, while low carrier mobilities of ~102 cm2V−1s−1 12 are not appropriate for high performance applications. Stacking of transition metal dichalcogenides in van der Waals heterostructures can improve the carrier mobility13. In addition, such heterostructures provide high Ion/Ioff ratios of ~103 for WSe2–MoS2 and MoTe2–SnSe214, ~104 for MoS2–CuInP2S615, ~106 for MoTe2–SnS216, and ~107 for WS2-graphene17. However, understanding of the carrier transport and realization of large-area growth are challenges that limit applications18,19. FETs based on wide bandgap oxides such as β-Ga2O3 (bandgap of 4.8 eV20; Ion/Ioff ratio of ~107–109 and electron mobility of 32–180 cm2V−1s−1 21) and In2O3 (bandgap of 3.1 eV22; Ion/Ioff ratio of ~106 and electron mobility of 127 cm2V−1s−1 23) provide excellent Ion/Ioff ratios but the carrier mobilities are low. Hole mobilities in excess of 104 cm2V−1s−1 are predicted for MXenes, a family of two-dimensional transition metal carbides and nitrides24,25. Though they can be employed in FET sensors26,27, application in logic circuits is impeded by degradation in the presence of water and air28. Remarkably, with bandgaps of 0.3–2.0 eV29, monolayer and few-layer black phosphorene achieve competitive hole mobilities of ~103 cm2V−1s−1 and Ion/Ioff ratios of ~105 30,31 but also degrade in the presence of water and air32,33.
The common metal contacts used to inject charge carriers into the two-dimensional channel material cause Ohmic resistance and/or Schottky barriers that dramatically impact the efficiency of the injection. As it is a great challenge to reduce the contact resistance34, junction-free FETs (consisting of a single material) are an interesting alternative35. While the realization of metallic electrode regions turns out be difficult, it can be achieved in the case of black and blue phosphorene nanoribbon junction-free FETs by O functionalization36. However, this requires restriction of the O functionalization to the nanoribbon edges to avoid adverse effects on the material properties37,38 and only rather low Ion/Ioff ratios of ~102 (with transconductances of ~104) are reported36. In the present work, we demonstrate that these limitations can be overcome by blue phosphorene junction-free FETs. Monolayer blue phosphorene has a bandgap of 1.5–2.0 eV32,33 and bilayer blue phosphorene is metallic39. This unique combination of material properties paves the way to junction-free FETs with monolayer blue phosphorene as the semiconducting channel material and bilayer blue phosphorene as the electrode material. We show that such a design gives rise to favorable FET characteristics. The Ion/Ioff ratio reaches high values of ~104 due to the junction-free design with low contact resistance. The transconductance is as high as 603 (811) μS/μm for transport along the armchair (zigzag) direction.
Results
Design
Figure 1 shows the optimized structures of monolayer and bilayer blue phosphorene as well as the corresponding band structures and projected densities of states. Monolayer blue phosphorene turns out to be an indirect bandgap semiconductor in agreement with the literature32 and bilayer blue phosphorene turns out to be a metal with an interlayer distance of 1.84 Å in agreement with the literature39. The metallic nature of bilayer blue phosphorene is a result of the short interlayer distance in the energetically favorable A1B−1 stacking. The metallic states are almost equally due to the P 3s, 3px,y (the px and py orbitals are degenerate by symmetry), and 3pz orbitals. The hole mobility of blue phosphorene calculated by deformation potential theory (2.2 × 103 cm2V−1s−1) clearly exceeds the value reported for black phosphorene (~102 cm2V−1s−1, both experimental and theoretical40,41) and compares well with the value reported for few-layer black phosphorene (~103 cm2V−1s−1 30).
Figure 2a, e depict the proposed bilayer-monolayer-bilayer FET design with monolayer blue phosphorene serving as the channel material and bilayer blue phosphorene serving as the electrode material. The key advantages are: First, there is no intrinsic strain due to lattice mismatch between the channel and electrode materials, since the device is based on blue phosphorene only. Second, the continuous semiconductor-metal contacts reduce the resistance. To quantitatively evaluate the potential of the device, we apply a field-effect gate model42, considering transport in both the armchair and zigzag directions.
a, e Schematic representations. Blue and red spheres represent the P and H atoms, respectively, and gray color marks the electrodes. b, f Transmission spectrum for different channel lengths and k-meshes. c, g Channel current as a function of the gate charge for different channel biases. d, h I–V characteristics for different gate charges.
High quality monolayer blue phosphorene can be grown on Au(111) subtrate by molecular beam epitaxy33, while there is so far no report of synthesis of bilayer blue phosphorene though the material is predicted to be dynamically stable39. It is likely that bilayer blue phosphorene can be fabricated in the energetically favorable A1B−1 stacking by layer transfer techniques, because the large interlayer interaction prevents spontaneous changes in the structure39. Specifically, the wetting transfer method for preparing twisted bilayer graphene43 can be transfered to blue phosphorene due to the fact that the two materials share their hexagonal structure. The method adopts polydimethylsiloxane as substrate for the transfer, which previously was used for transferring monolayer and few-layer black phosphorene44,45,46. Once bilayer blue phosphorene is obtained, the proposed bilayer-monolayer-bilayer design can be achieved by local etching. In particular, the atomic layer etching technique enables layer-by-layer etching through alternation between chemical adsorption to modify the exposed layer and physical desorption to remove exactly this modified layer47,48. As an alternative, the methodology of layer-controlled thinning of black phosphorous by an Ar+ ion beam with narrow energy distribution49 can be transferred to blue phosphorene due to the flexible tunability of the Ar+ ion energy50,51. Chemical vapor deposition opens up another route to the bilayer-monolayer-bilayer design, as it was already used to fabricate monolayer-bilayer-monolayer lateral heterojunctions of transition metal dichalcogenides52,53 and to synthesize few-layer black phosphorene from black phosphorous as precursor54. The method is transferable to blue phosphorene due to the common hexagonal structure with the transition metal dichalcogenides and the fact that the same precursor can be used as for black phophorene.
Properties
To address the transport, we plot the transmission spectrum obtained for the armchair and zigzag devices in Fig. 2b, f. We find a wide transmission gap that represents the semiconducting channel. As the data show hardly any influence of the channel length, studying a short channel is sufficient to capture the transport properties of the device in the ballistic regime. It turns out that a 1 × 6 × 1 k-mesh is sufficient to obtain converged results. The first eigenchannel wave function of the left-to-right transmission is plotted in Fig. 3. Due to the symmetry of the FET design, the result for right-to-left transmission (not shown here) is similar with opposite phase55. Figure 3 demonstrates delocalization of the first transmission eigenchannel wave function into the channel region for both the armchair and zigzag directions, and even into the other electrode for the zigzag direction, pointing to excellent coupling at the semiconductor-metal contacts.
Figure 2c, g depicts for the armchair and zigzag devices the channel current as a function of the gate charge at channel biases of 0.2 and 0.4 V. The gate bias is given by the modification of the Hartree potential due to the presence of the gate charge. We obtain Ion as the channel current at a gate charge of 13.6 e (giving rise to a conservative estimate of the Ion/Ioff ratio) and Ioff as the minimum of the channel current. At a channel bias of 0.2 V we obtain for transport along the armchair (zigzag) direction Ion = 9.1 × 100 (1.5 × 101) μA and Ioff = 1.3 × 10−3 (5.6 × 10−4) μA, resulting in an Ion/Ioff ratio of 7.0 × 103 (2.6 × 104), while at a channel bias of 0.4 V we obtain Ion = 1.2 × 101 (2.3 × 101) μA and Ioff = 3.3 × 10−3 (1.5 × 10−3) μA, resulting in a lower Ion/Ioff ratio of 4.2 × 103 (1.5 × 104). The obtained Ion/Ioff ratios are significantly higher than those reported for black and blue phosphorene nanoribbon junction-free FETs (2.3 × 102 and 3.5 × 102, respectively)36 and compare well with the experimental values reported for black phosphorene FETs (102–104)56. The threshold voltage estimated by the constant current method for a channel bias of 0.2 V and a channel current of 0.1 μA times the ratio of the gate width and length is −0.4 (1.9) V for the armchair (zigzag) device.
Figure 2d, h shows for the armchair and zigzag devices that the channel current generally increases with both the channel bias and gate bias. The semiconductor-metal contact of the zigzag device turns out to be Ohmic with efficient charge injection while that of the armchair device is of Schottky type. Using the transfer length method, we obtain from the interception of the linear fitting in Fig. 4 with the total resistance axis for the zigzag device a contact resistance of 3 × 10−4 MΩ. Multiplied with the width of the device this results in 0.3 Ωμm, which compares very well with experimental reports for graphene (23 Ωμm)57, Bi-MoS2 (123 Ωμm)58, and MoS2 (200–300 Ωμm)34 devices. The behavior for positive and negative channel bias is very similar for the armchair device, but not precisely the same, since the left and right electrodes are not completely symmetric, see Fig. 2a, e. To quantify the dependence of the channel current on the gate voltage Vgate, we calculate the transconductance normalized by the width W of the device (width of the supercell) as (dI/dVgate)/W59. We approximate dI/dVgate = [I(Vgate + ΔVgate) − I(Vgate − ΔVgate)]/(2ΔVgate), where ΔVgate = 0.24 (0.22) V for the armchair (zigzag) device. As expected from the I–V characteristics in Fig. 2d and h, the transconductances in Fig. 5 are higher for the zigzag than the armchair device. At a channel bias of −1.0 V we obtain a transconductance of 603 μS/μm for the armchair device and at a channel bias of −0.4 V we obtain a transconductance of 811 μS/μm for the zigzag device. These values significantly exceed the experimental values reported for black phosphorene (282 μS/μm)60 and monolayer MoS2 (185 μS/μm)61.
Discussion
We propose a junction-free FET based on blue phosphorene, which is semiconducting as a monolayer and metallic as a bilayer. The I–V characteristics obtained for the bilayer-monolayer-bilayer design (does not require doping to create source and drain) demonstrate efficient electron transport between the channel material and electrodes while a decent Ion/Ioff ratio is provided. The obtained transconductances outperform competing FETs based on two-dimensional materials. It turns out that a channel length of ~30 Å is sufficient to simulate the transport properties of the device. While experimental realization of a device with such a short channel is challenging, an increased channel length will only improve the Ion/Ioff ratio of the FET62. The transport properties turn out to be slightly better for the zigzag device than the armchair device due to better monolayer-bilayer coupling. From a cost perspective the proposed FET is favorable over junction-free devices based on PdS2 (requires expensive Pd)35 and phosphorene nanoribbons (requires O functionalization limited to the nanoribbon edges)36. The performance can be further improved by using a gate oxide instead of the simulated vacuum and by optimizing the gate length and underlap (space between the end of the gate and the electrode along the transport direction)63. The proposed FET design can be realized by established fabrication methods.
Methods
First-principles calculations
We perform first-principles calculations using density functional theory within the generalized gradient approximation of Perdew-Burke-Ernzerhof for the exchange-correlation functional, as implemented in the Quantum-ESPRESSO code64. The total energy convergence threshold is set to 10−8 Ry and all structures are optimized until the Hellmann–Feynman forces stay below 10−5 Ry/bohr. A 80 Ry cut-off is used in the plane wave expansion and a 640 Ry cut-off for the augmentation charge. The first Brillouin zones of monolayer and bilayer blue phosphorene are sampled on Monkhorst-Pack 12 × 12 × 1 k-meshes. The densities of states are calculated by the tetrahedron method with Monkhorst-Pack 24 × 24 × 1 k-meshes. Periodic boundary conditions are used with 20 Å vacuum slabs to create two-dimensional models.
Transport calculations
Transport calculations are performed adopting the non-equilibrium Green’s function method in combination with density functional theory65, which provides excellent agreement with experimental results63,66. A 300 Ry cut-off is used for the double-zeta polarized basis set. Monkhorst-Pack 1 × 6 × 100 k-meshes are employed for the semi-infinite electrode calculations and Monkhorst-Pack 1 × 6 × 1 k-meshes for the transport calculations. The transmission spectrum of electrons with energy E subject to a channel bias V between the electrodes (bilayer blue phosphorene) through the scattering region (monolayer blue phosphorene) is calculated as67
where G(E, V) is the retarded Green’s function of the scattering region and ΣL,R(E, V) are the self-energies of the left (L) and right (R) electrodes. The current is given by67
where f is the Fermi–Dirac distribution function, EF is the Fermi energy, and e is the elementary charge. We consider a 1 × 3 × 5 (1 × 2 × 9) supercell of monolayer blue phosphorene to model the channel material and a 1 × 3 × 2 (1 × 2 × 3) supercell of bilayer blue phosphorene to model the electrodes for transport along the armchair (zigzag) direction. The in-plane supercell dimensions given as width × length are 10.09 × 29.13 (11.65 × 30.27) Å2 for the channel material and 10.09 × 11.65 (11.65 × 10.09) Å2 for the electrodes. A uniformly charged gate is added at a distance of 20 Å in the out-of-plane direction to realize a FET geometry. The transmission eigenchannel wave functions are calculated by means of the inelastica package68.
Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
References
Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261–8283 (2015).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Eftekhari, A. Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. J. Mater. Chem. A 5, 18299–18325 (2017).
Zeng, M., Xiao, Y., Liu, J., Yang, K. & Fu, L. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev. 118, 6236–6296 (2018).
Qian, Q. et al. 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. NPJ 2D Mater. Appl. 3, 24–32 (2019).
Kuc, A., Zibouche, N. & Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011).
Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 85, 033305 (2012).
Tongay, S. et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012).
Yazyev, O. V. & Kis, A. MoS2 and semiconductors in the flatland. Mater. Today 18, 20–30 (2015).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Hwang, W. S. et al. Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101, 013107 (2012).
Yu, Z. et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 27, 1604093 (2017).
Xu, L. et al. Enhanced electrical performance of van der Waals heterostructure. Adv. Mater. Interfaces 8, 2001850 (2021).
Li, C. et al. WSe2/MoS2 and MoTe2/SnSe2 van der Waals heterostructure transistors with different band alignment. Nanotechnol. 28, 415201 (2017).
Si, M., Liao, P.-Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).
Szabo, A., Koester, S. J. & Luisier, M. Ab-initio simulation of van der Waals MoTe2-SnS2 heterotunneling FETs for low-power electronics. IEEE Electron Device Lett. 36, 514–516 (2015).
Yeh, C.-H., Cao, W., Pal, A., Parto, K. & Banerjee, K. Area-selective-CVD technology enabled top-gated and scalable 2D-heterojunction transistors with dynamically tunable Schottky barrier. In IEEE International Electron Devices Meeting 23.4.1–23.4.4 (2019).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Liang, S.-J., Cheng, B., Cui, X. & Miao, F. Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 32, 1903800 (2020).
Xue, H. et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application. Nanoscale Res. Lett. 13, 290 (2018).
Chabak, K. D. et al. Lateral β-Ga2O3 field effect transistors. Semicond. Sci. Technol. 35, 013002 (2019).
Li, Q. et al. Gas-mediated liquid metal printing toward large-scale 2D semiconductors and ultraviolet photodetector. NPJ 2D Mater. Appl. 5, 36–45 (2021).
Nayak, P. K., Hedhili, M. N., Cha, D. & Alshareef, H. N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 103, 033518 (2013).
Zhang, X., Zhao, X., Wu, D., Jing, Y. & Zhou, Z. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. Nanoscale 7, 16020–16025 (2015).
Zha, X.-H. et al. The thermal and electrical properties of the promising semiconductor MXene Hf2CO2. Sci. Rep. 6, 27971 (2016).
Xu, B. et al. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28, 3333–3339 (2016).
Li, Y. et al. MXene-graphene field-effect transistor sensing of influenza virus and SARS-CoV-2. ACS Omega 6, 6643–6653 (2021).
Mashtalir, O. et al. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2, 14334–14338 (2014).
Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 112, 4523–4530 (2015).
Zhu, Z. & Tománek, D. Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014).
Zhang, J. L. et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903–4908 (2016).
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
Ghorbani-Asl, M., Kuc, A., Miro, P. & Heine, T. A single-material logical junction based on 2D crystal PdS2. Adv. Mater. 28, 853–856 (2016).
Montes, E. & Schwingenschlögl, U. High-performance field-effect transistors based on αP and βP. Adv. Mater. 31, 1807810 (2019).
Huang, Y. et al. Interaction of black phosphorus with oxygen and water. Chem. Mater. 28, 8330–8339 (2016).
Mir, S. H., Yadav, V. K. & Singh, J. K. Recent advances in the carrier mobility of two-dimensional materials: a theoretical perspective. ACS Omega 5, 14203–14211 (2020).
Arcudia, J., Kempt, R., Cifuentes-Quintal, M. E., Heine, T. & Merino, G. Blue phosphorene bilayer is a two-dimensional metal and an unambiguous classification scheme for buckled hexagonal bilayers. Phys. Rev. Lett. 125, 196401 (2020).
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
Xiao, J. et al. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Sci. Rep. 5, 9961 (2015).
Papior, N., Gunst, T., Stradi, D. & Brandbyge, M. Manipulating the voltage drop in graphene nanojunctions using a gate potential. Phys. Chem. Chem. Phys. 18, 1025–1031 (2016).
Hou, Y. et al. Preparation of twisted bilayer graphene via the wetting transfer method. ACS Appl. Mater. Interfaces 12, 40958–40967 (2020).
Island, J. O., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015).
Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14, 826–832 (2015).
Lee, Y. et al. Fabrication and imaging of monolayer phosphorene with preferred edge configurations via graphene-assisted layer-by-layer thinning. Nano Lett. 20, 559–566 (2019).
Kanarik, K. J. et al. Overview of atomic layer etching in the semiconductor industry. J. Vac. Sci. Technol. 33, 020802 (2015).
Kim, K. S. et al. Atomic layer etching of graphene through controlled ion beam for graphene-based electronics. Sci. Rep. 7, 2462 (2017).
Park, J. W. et al. Layer-controlled thinning of black phosphorus by an Ar ion beam. J. Mater. Chem. C 5, 10888–10893 (2017).
Kabiraj, D. & Ghosh, S. Defect engineering in GaAs using high energy light ion irradiation: role of electronic energy loss. J. Appl. Phys. 109, 033701 (2011).
Li, Z. & Chen, F. Ion beam modification of two-dimensional materials: characterization, properties, and applications. Appl. Phys. Rev. 4, 011103 (2017).
Zhang, C. et al. Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. Nat. Commun. 7, 10349 (2016).
Mandyam, S. V. et al. Controlled growth of large-area bilayer tungsten diselenides with lateral p-n junctions. ACS Nano 13, 10490–10498 (2019).
Smith, J. B., Hagaman, D. & Ji, H.-F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnol. 27, 215602 (2016).
Paulsson, M. & Brandbyge, M. Transmission eigenchannels from nonequilibrium Green’s functions. Phys. Rev. B 76, 115117 (2007).
Illarionov, Y. Y. et al. Highly-stable black phosphorus field-effect transistors with low density of oxide traps. NPJ 2D Mater. Appl. 1, 23–29 (2017).
Anzi, L. et al. Ultra-low contact resistance in graphene devices at the Dirac point. 2D Mater. 5, 025014 (2018).
Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
Javey, A. et al. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 1, 241–246 (2002).
Haratipour, N. & Koester, S. J. Ambipolar black phosphorus MOSFETs with record n-channel transconductance. IEEE Electron Device Lett. 37, 103–106 (2016).
Arutchelvan, G. et al. Impact of device scaling on the electrical properties of MoS2 field-effect transistors. Sci. Rep. 11, 6610 (2021).
Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).
Quhe, R. et al. Simulations of quantum transport in sub-5-nm monolayer phosphorene transistors. Phys. Rev. Appl. 10, 024022 (2018).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mater. 21, 395502 (2006).
Brandbyge, M., Mozos, J. L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).
Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).
Datta, S. Quantum transport: Atom to transistor (Cambridge University Press, 2005).
Frederiksen, T., Paulsson, M., Brandbyge, M. & Jauho, A.-P. Inelastic transport theory from first principles: methodology and application to nanoscale devices. Phys. Rev. B 75, 205413 (2007).
Acknowledgements
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at KAUST.
Author information
Authors and Affiliations
Contributions
S.T. executed the calculations. P.C.R. and U.S. contributed to the interpretation of the data and writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Tyagi, S., Rout, P.C. & Schwingenschlögl, U. High-performance junction-free field-effect transistor based on blue phosphorene. npj 2D Mater Appl 6, 86 (2022). https://doi.org/10.1038/s41699-022-00361-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41699-022-00361-1