Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Open-source versatile 3D-print animal conditioning platform design for in vivo preclinical brain imaging in awake mice and anesthetized mice and rats

Abstract

Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats. We show ease of use and reproducibility of subject conditioning with anatomical T2-weighted imaging for both mice and rats. We also demonstrate the application of our design for awake functional MRI in mice using both visual evoked potential and olfactory stimulation paradigms. In addition, using a combined MRI, positron emission tomography and X-ray computed tomography experiment, we demonstrate that our proposed cradle design can be utilized for multiple imaging modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Animal conditioning platform for multimodal imaging in small animals.
Fig. 2: Animal conditioning and MRI in anesthetized and awake mice and anesthetized rats.
Fig. 3: Multimodal imaging in anesthetized and awake mice.
Fig. 4: Setup and quality controls for fMRI in awake mice.
Fig. 5: fMRI responses in awake mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Cunha, L. et al. Preclinical imaging: an essential ally in modern biosciences. Mol. Diagnosis Ther. 18, 153–173 (2014).

    Article  Google Scholar 

  2. Huettel, S. A., Song, A. W. & Gregory, M. Functional Magnetic Resonance Imaging (Sinauer Associates, 2004).

  3. Gao, Y. R. et al. Time to wake up: studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 153, 382–398 (2017).

    Article  PubMed  Google Scholar 

  4. Ferris, C. F. Applications in awake animal magnetic resonance imaging. Front. Neurosci. 16, 1–17 (2022).

    Article  Google Scholar 

  5. Desai, M. et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J. Neurophysiol. 105, 1393–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ferris, C. F. et al. Studies on the Q175 knock-in model of Huntington’s disease using functional imaging in awake mice: evidence of olfactory dysfunction. Front. Neurol. 5, 94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen, X. et al. Sensory evoked fMRI paradigms in awake mice. NeuroImage 204, 116242 (2020).

    Article  PubMed  Google Scholar 

  8. Fonseca, M. S., Bergomi, M. G., Mainen, Z. F. & Shemesh, N. Functional MRI of large scale activity in behaving mice. Preprint at bioRxiv https://doi.org/10.1101/2020.04.16.044941 (2020).

  9. Han, Z. et al. Awake and behaving mouse fMRI during Go/No-Go task. NeuroImage 188, 733–742 (2019).

    Article  PubMed  Google Scholar 

  10. Sakurai, K. et al. Hyper BOLD activation in dorsal raphe nucleus of APP/PS1 Alzheimer’s disease mouse during reward-oriented drinking test under thirsty conditions. Sci. Rep. 10, 3915 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Singh, S., Prakash, C. & Singh, R. 3D Printing in Biomedical Engineering (Springer, 2020).

  12. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. & Hui, D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B 143, 172–196 (2018).

    Article  CAS  Google Scholar 

  13. Dinh, T. N. A., Jung, W. B., Shim, H. J. & Kim, S. G. Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice. NeuroImage 226, 117542 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Gutierrez-Barragan, D. et al. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr. Biol. 32, 631–644.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mikkelsen, S. H. et al. Head holder and cranial window design for sequential magnetic resonance imaging and optical imaging in awake mice. Front. Neurosci. 16, 1–14 (2022).

    Article  Google Scholar 

  16. Gilbert, K. M. et al. Open-source hardware designs for MRI of mice, rats, and marmosets: integrated animal holders and radiofrequency coils. J. Neurosci. Methods 312, 65–72 (2019).

    Article  PubMed  Google Scholar 

  17. Stenroos, P. et al. Awake rat brain functional magnetic resonance imaging using standard radio frequency coils and a 3D printed restraint kit. Front. Neurosci. 12, 548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Donohoe, D. L., Dennert, K., Kumar, R., Freudinger, B. P. & Sherman, A. J. Design and 3D-printing of MRI-compatible cradle for imaging mouse tumors. 3D Print. Med. 7, 33 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yaghmazadeh, O. et al. Neuronal activity under transcranial radio-frequency stimulation in metal-free rodent brains in-vivo. Commun. Eng. 1, 15 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mechling, A. E. et al. Deletion of the mu opioid receptor gene in mice reshapes the reward-aversion connectome. Proc. Natl Acad. Sci. USA 113, 11603–11608 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Arefin, T. M. et al. Remodeling of sensorimotor brain connectivity in Gpr88-deficient mice. Brain Connect. 7, 526–540 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sforazzini, F., Schwarz, A. J., Galbusera, A., Bifone, A. & Gozzi, A. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. NeuroImage 87, 403–415 (2014).

    Article  PubMed  Google Scholar 

  23. Liu, Y. et al. An open database of resting-state fMRI in awake rats. NeuroImage 220, 117094 (2020).

    Article  PubMed  Google Scholar 

  24. Di, X. & Biswal, B. B. Modulatory interactions between the default mode network and task positive networks in resting-state. PeerJ 2, e367 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. More, S. S. & Zhang, X. The UTE and ZTE sequences at ultra-high magnetic field strengths: a survey. Preprint at https://doi.org/10.48550/arXiv.2210.03317 (2022).

  26. Ballard, D. H. et al. Clinical applications of 3D printing: primer for radiologists. Acad. Radiol. 25, 52–65 (2018).

    Article  PubMed  Google Scholar 

  27. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  28. Tsurugizawa, T. et al. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. Sci. Adv. 6, 1–16 (2020).

    Article  Google Scholar 

  29. Boyd, J. D., Khaytin, I. & Casagrande, V. A. in Encyclopedia of Neuroscience (eds Binder, M. D., Hirokawa, N. & Windhorst, U.) 1448–1455 (Springer, 2009).

  30. Pawela, C. P. et al. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials. NeuroImage 41, 525–534 (2008).

    Article  PubMed  Google Scholar 

  31. Courtiol, E. & Wilson, D. A. Thalamic olfaction: characterizing odor processing in the mediodorsal thalamus of the rat. J. Neurophysiol. 111, 1274–1285 (2014).

    Article  PubMed  Google Scholar 

  32. Lindhardt, T. B., Gutiérrez-Jiménez, E., Liang, Z. & Hansen, B. Male and female C57BL/6 mice respond differently to awake magnetic resonance imaging habituation. Front. Neurosci. 16, 1–14 (2022).

    Article  Google Scholar 

  33. Verghese, G. et al. Autonomous animal heating and cooling system for temperature-regulated magnetic resonance experiments. NMR Biomed. https://doi.org/10.1002/nbm.5046 (2023).

  34. Arefin, T. M. et al. High resolution diffusion magnetic resonance imaging based atlas of the C57BL/6J adult mouse brain: a tool for examining mouse brain structures. Proc. Intl Soc. Mag. Reson. Med. 27, 2648 (2019).

  35. Degiorgis, L. et al. Translational structural and functional signatures of chronic alcohol effects in mice. Biol. Psychiatry 91, 1039–1050 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Arefin, T. M., Lee, C. H., White, J. D., Zhang, J. & Kaffman, A. Macroscopic structural and connectome mapping of the mouse brain using diffusion magnetic resonance imaging. Bio Protoc. 11, 1–17 (2021).

    Article  Google Scholar 

  37. Arefin, T. M. et al. Towards reliable reconstruction of the mouse brain corticothalamic connectivity using diffusion MRI. NeuroImage 273, 120111 (2023).

    Article  PubMed  Google Scholar 

  38. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B. & Bandettini, P. A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44, 893–905 (2009).

    Article  PubMed  Google Scholar 

  39. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Hyvarinen, A. & Oja, E. Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Vöröslakos whose designs have been an inspiring source for some of the elements in the presented study. We thank members of the Buzsáki lab (buzsakilab.com), and labs of J.Z., Y.Z.W. and L.A. and the team of the preclinical imaging core at the NYU Grossman School of Medicine for their help and feedback on different aspects during the evolution of this work. This work was supported by NIH grant no. 1R01NS113782-01A1 and TL1 postdoctoral fellowship no. 2TL1TR001447-06A1 to O.Y. All the imaging experiments were performed at the NYU Langone Health Preclinical Imaging Laboratory, supported by the NIH/SIG no. 1S10OD018337-01, the Laura and Isaac Perlmutter Cancer Center Support Grant no. NIH/NCI 5P30CA016087, and the NIBIB Biomedical Technology Resource Center Grant NIH no. P41 EB017183 as well as the NYU CTSA grant no. UL1 TR000038 from the National Center for Advancing Translational Sciences, NIH.

Author information

Authors and Affiliations

Authors

Contributions

O.Y. and L.A. conceived the project, and O.Y. coordinated its execution. O.Y. designed the platform with input from Z.B.Y., L.A., S.Q. and Y.Z.W. O.Y., Z.B.Y., T.M.A., L.A., Y.Z.W. and J.Z. designed the experiments. O.Y., Z.B.Y., T.M.A. and R.Y. performed the experiments and analyzed the data. O.Y., Z.B.Y., T.M.A. and L.A. wrote the paper, and all authors participated in its revision.

Corresponding authors

Correspondence to Youssef Zaim Wadghiri, Leeor Alon or Omid Yaghmazadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Petteri Stenroos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Youss, Z., Arefin, T.M., Qayyum, S. et al. Open-source versatile 3D-print animal conditioning platform design for in vivo preclinical brain imaging in awake mice and anesthetized mice and rats. Lab Anim 53, 33–42 (2024). https://doi.org/10.1038/s41684-023-01320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-023-01320-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing