Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

When all is not lost: considering genetic compensation in laboratory animals

Subjects

A recent article by El-Brolosy and colleagues introduced an unexpected twist for our understanding of knock-out mutations by revealing compensatory mechanisms that recruit the expression of other genes to mitigate the consequences of the mutation. We discuss the main findings of the paper and their impact for our interpretations of the effects of mutations in laboratory animals and humans.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene knock-out and gene knock-down.
Fig. 2: Proposed mechanisms of transcriptional adaptation.

References

  1. MacArthur, D. G. et al. Science. 335, 823–828 (2012).

    Article  CAS  Google Scholar 

  2. Barbaric, I., Miller, G. & Dear, T. N. Briefings Funct. Genomics Proteomics 6, 91–103 (2007).

    Article  CAS  Google Scholar 

  3. Housden, B. E. et al. Nat. Rev. Genet. 18, 24–40 (2017).

    Article  CAS  Google Scholar 

  4. Kok, F. O. et al. Dev. Cell 32, 97–108 (2015).

    Article  CAS  Google Scholar 

  5. Rossi, A. et al. Nature 524, 230–233 (2015).

    Article  CAS  Google Scholar 

  6. De Souza, A. T. et al. Nucleic Acids Res. 34, 4486–4494 (2006).

    Article  Google Scholar 

  7. O’Leary, M. N. et al. PLoS Genet. 9, (2013).

  8. El-Brolosy, M. A. & Stainier, D. Y. R. PLoS Genet. 13, 1–17 (2017).

    Article  Google Scholar 

  9. El-Brolosy, M. A. et al. Nature 568, 193–197 (2019).

    Article  CAS  Google Scholar 

  10. Kurosaki, T., Popp, M. W. & Maquat, L. E. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).

    Article  CAS  Google Scholar 

  11. Ma, Z. et al. Nature 568, 259–263 (2019).

    Article  CAS  Google Scholar 

  12. Morgens, D. W., Deans, R. M., Li, A. & Bassik, M. C. Nat. Biotechnol. 34, 634–636 (2016).

    Article  CAS  Google Scholar 

  13. Majidinia, M., Sadeghpour, A. & Yousefi, B. J. Cell. Physiol. 233, 2937–2948 (2018).

    Article  CAS  Google Scholar 

  14. Breschi, A., Gingeras, T. R. & Guigó, R. Nat. Rev. Genet. 18, 425–440 (2017).

    Article  CAS  Google Scholar 

  15. Pertea, M. et al. Genome Biol. 19, 208 (2018).

    Article  CAS  Google Scholar 

  16. Fischer, S. E. J. Curr. Protoc. Mol. Biol. 2015, (2015).

Download references

Acknowledgements

The authors thank Dr Louise Tinsley for expert assistance with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Teboul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunton-Stasyshyn, R.K.A., Wells, S. & Teboul, L. When all is not lost: considering genetic compensation in laboratory animals. Lab Anim 48, 282–284 (2019). https://doi.org/10.1038/s41684-019-0397-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-019-0397-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing