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Damage assessment in structures 
using artificial neural network 
working and a hybrid stochastic 
optimization
H. Tran‑Ngoc1,2, S. Khatir3, T. Le‑Xuan2, H. Tran‑Viet2, G. De Roeck4, T. Bui‑Tien2 & 
M. Abdel Wahab5*

Artificial neural network (ANN) has been commonly used to deal with many problems. However, 
since this algorithm applies backpropagation algorithms based on gradient descent (GD) technique 
to look for the best solution, the network may face major risks of being entrapped in local minima. 
To overcome those drawbacks of ANN, in this work, we propose a novel ANN working parallel with 
metaheuristic algorithms (MAs) to train the network. The core idea is that first, (1) GD is applied 
to increase the convergence speed. (2) If the network is stuck in local minima, the capacity of the 
global search technique of MAs is employed. (3) After escaping from local minima, the GD technique 
is applied again. This process is applied until the target is achieved. Additionally, to increase the 
efficiency of the global search capacity, a hybrid of particle swarm optimization and genetic algorithm 
(PSOGA) is employed. The effectiveness of ANNPSOGA is assessed using both numerical models and 
measurement. The results demonstrate that ANNPSOGA provides higher accuracy than traditional 
ANN, PSO, and other hybrid ANNs (even a higher level of noise is employed) and also considerably 
decreases calculational cost compared with PSO.

During service life, engineering structures can be damaged by a wide variety of impacts such as corrosion, over-
load, environmental factors, natural disasters, and human impacts. Regular inspections and health monitoring 
are essential to find and repair any defect occurring in structures1. This plays an important role in increasing the 
lifetime and operational effectiveness of the structure. During the past decades, numerous research approaches 
have been applied for structural health monitoring (SHM)2–4.

ANN is an intelligent computational technique inspired by the way that the human biological system employs 
to process data. With recent ground-breaking advances, ANN has been applied commonly to deal with com-
plicated issues in different fields during the past decades5–10. However, it is acknowledged that ANN still has 
its fundamental drawbacks. To look for the best solution, ANN employs BP algorithms based on GD methods 
using the principle of a downward slope. This makes the network get stuck when falling into concave surfaces 
(valleys). Hence, the obtained result is only the local best instead of the global best. This causes a reduction in 
the accuracy and efficiency of ANN.

With the global search capacity of optimization algorithms11–15, in recent years, many researchers have also 
provided workable solutions to overcome the local minima drawbacks and improve the efficiency of ANN. For 
instance, Samir et al.17 proposed PSO to enhance training parameters (weight and bias) of ANN to detect dam-
ages in a laminated composite. In their research, PSO was employed to determine optimal starting points. This 
approach probably assisted the network in avoiding initial local minima. Nevertheless, because PSO was only 
applied to identify training parameters of the first steps, the network may be still trapped in other local bests in 
the subsequent steps. With the same approach, Rajendra et al.18 employed genetic algorithm (GA) to improve the 
effectiveness of ANN, when predicting optimized parameters for biodiesel production. In the work of Yazdan-
mehr et al.19, GA was coupled with ANN to find the optimal material producing nanocrystalline powder with 
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minimum coercion. A new approach combining GA with ANN (GAANN) to evaluate and optimize production 
is proposed in the research of Azadeh et al.20.

It is easily seen that the above-mentioned approaches17–20 and other current approaches only applied solutions 
to local minimum prevention by choosing a beneficial starting position employing the global search capability 
of other algorithms. Although the substantial benefits of the aforementioned proposed methods to ANN are 
indisputable, it is commonly acknowledged that looking for a good starting point remains a challenge. Specifi-
cally, choosing a good starting point only may assist the network in avoiding the first local minimum (the first 
valley). However, a network often has many local bests widely distributed, especially if the network contains a 
complex error surface. Hence, the solution of selecting good starting points may no further be beneficial because 
the particles of the network may be still trapped in subsequent local minima (other valleys) in the process of 
seeking the best solutions.

To remedy these shortcomings, in this paper, we propose a novel ANN working parallel with metaheuristic 
algorithms, which surpasses previous approaches17–20 that only apply the capacity of global search techniques 
to look for good starting points for the network. The core idea of this approach is that the global search capacity 
is applied to work parallel with the GD technique to prevent the network from trapping in the locally optimal 
solutions throughout the process of seeking the best solution instead of only choosing a beneficial starting 
position used in previous approaches. Last but not least, in this research, to enhance the effectiveness of global 
search techniques, we employ a hybrid PSOGA to determine training parameters during the process of training 
the network (weight and bias). Specifically, GA with crossover and mutation operators is applied to generate the 
initial elite populations, and those populations are then employed to seek the best solution based on the global 
search capacity of PSO.

To consider the operational condition of structures in the real application, the effect of noise is also considered 
and the results show that ANNPSOGA surpasses ANN as well as other hybrid-ANNs regarding accuracy even it 
employs a higher level of noise for input data. To validate the effectiveness of the proposed method, ANNPSOGA 
is compared with PSO, traditional ANN and approaches mentioned in Refs.17–20 named as ANNPSO. The effi-
ciency and applicability of ANNPSOGA are evaluated by employing both numerical and measured models with 
different damage scenarios of the tested structures (single and multiple damages). We conduct all calculation 
tasks in the computer with processor: Intel (R) core™ i7-8650U; CPU @ 1.9 GHz. For all examples in this work, 
Levenberg–Marquardt (LM) backpropagation algorithm is used to train the network.

The main contributions of this work are depicted as follows:

•	 A hybrid algorithm combining PSO and GA is proposed to enhance the capacity of global search of traditional 
PSO and GA.

•	 A parallel working between ANN and a hybrid algorithm (GAPSO) is developed to deal with local minimum 
problems of ANN in the most radical way.

•	 The effectiveness and correctness of the proposed method are proved through both numerical model and 
measurement in which each model contains a large number of scenarios (single damages, multiple damages).

•	 A comparison between the proposed method and numerous other algorithms including traditional PSO, 
traditional ANN, and other hybrid ANNs is conducted.

•	 The proposed approach also compares the effect of noise on the trained data with traditional ANN, MA, and 
other hybrid ANNs.

Methodology
ANN is an intelligent computational program imitating the method that the human biological system employs 
to process data, commonly applied to SHM over the past decades. Nevertheless, since ANN applies BP algo-
rithms using GD-based learning techniques to look for the best solution, this may pose a considerable risk of 
being entrapped in local minima to the network, especially, when the network generates too numerous locally 
optimal solutions.

The performance of ANN depends crucially on whether the network is entrapped in the local bests or not. 
A typical example (Fig. 1) depicts the process of seeking the best solution of ANN using the GD technique. In 
Fig. 1a, when the network solely contains the best solution, even though the departure position is (A) or (B), 
global solution (C) will be surely determined. In Fig. 1b, the network creates complex error surfaces with two 

Figure 1.   The process of determining the best solution using GD techniques of ANN (a) one local minimum, 
(b) less local minima, (c) many local minima; (d) proposed approach.
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local bests. If the network departs from (B), the global solution (C) is also determined correctly. However, if the 
starting position is from (A), the network only probably determines the local best (D) instead of the global best 
(C). Therefore, choosing an advantageous departure point may only help the network to avoid local minima for 
some simple problems.

It is recognized that many researchers have adopted this approach to address the local minimum problems of 
ANN17–20. However, this approach is only applicable to simple cases when the network only has small numbers of 
the best locally optimal solutions or these local minima are only distributed at one side. For complicated issues 
e.g. SHM problems, the network contains many local minima located everywhere (as shown in Fig. 1c). Hence, 
the solution for selecting the beneficial departure points may no further be effective.

Therefore, it is necessary to come up with workable solutions when the network is entrapped in the best 
local solutions instead of relying on the fortune of possessing an advantageous departure point. In this paper, 
we propose applying the stochastic search capacity of PSOGA to prevent the network from being entrapped in 
the local bests throughout the process of looking for the global best. Figure 1d illustrates the use of PSOGA to 
overcome local minimum problems of ANN.

In Fig. 1d, if the starting point is from A, the GD technique will make the network fall into local best (D). In 
this case, to assist the network in escaping from the local best (D), PSOGA is applied. PSOGA uses stochastic 
search techniques based on natural phenomena that may assist the particles in escaping from local minima.

ANNPSOGA.  In this part, the methodology of ANNPSOGA is elucidated. First, data set from the input 
layer together with weight ratios, bias ratios are summed and relayed to the hidden layer (see Fig. 2) as follows:

where fz1 is data of the z1th element transferring from the input data to the hidden layer; 
∑1

z2
 denotes the input 

data of the z2th element of the hidden layer; Xz1z2 , and Xz2 indicate training parameters connecting the input 
layer and the hidden layer. The parameters e1 and e2 denote the number of elements of the input layer and the 
hidden layer, respectively. After that, a sigmoid function is employed to calculate outputs (Oz2) at the hidden layer.

Elements of the hidden layer are then transferred to the output layer. This process applies Eq. (3).

∑2
z3

 is the input of the z3th neuron  of the output layer; e3 indicates the number of neurons in the output layer.

Oz3 is the output at the output layer.
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Figure 2.   The network structure.
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The deviation between predicted and real outputs (Ok
z3
andO

k
z3
) is calculated.

N0 denotes the proportion of output data.
If the network is entrapped in the locally optimal solution, it means that the deviation between predicted and 

real outputs of the next step is not smaller than that of the previous one (shown in Eq. (6)).

t  is tth iteration.
In this case, PSOGA is employed to escape the network from local minima. Specifically, PSOGA is used to 

determine the new weight and bias coefficient ( X) for the network. Weight and bias values from the ANN are 
then organized as a single vector, which is used as initial parameters of particles of PSOGA:

where X0 is weight and bias values from the ANN; n indicates the proportion of training parameters, m indicates 
the proportion of population, and T denotes a transposed matrix.

Calculating the values of E(Y) of initial populations based on Eq. (5).

The particles with better quality are selected for crossover and mutation.

αc is crossover percentage ( αc = 0.8).

αm is mutation percentage ( αm = 0.1).
High quality obtained from GA is used to look for the best solution of PSO.

x01 , x
0
2 , . . . , x

0
n are initial population of PSO determined from GA.

V0 is for initial velocity of elements.

P0 is initially local optimal solution of elements.

G0 is an initially global optimal solution of elements.
The limitation to the search space ( X lower ,Xupper) is applied.
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Updating new position and velocity of particles at the 1th iteration

C′ and C′′ denote the learning factors;w′ is the inertia weight parameter; r′ and r′′ are random values (0, 1);

Applying the objective function of Eq. (5) again.
Calculating E(X) of particles at 1th iteration

The best local solution ( P1 ) and the best global solution ( G1 ) of particles at 1th iteration are identified.
Updating new properties of particles at ith iteration

Calculating E(X) of particles at ith iteration

Selecting the best local solution ( Pi , ) and the best global solution ( Gi ) of particles at ith iteration.

The search process finishes and the best solutions are achieved.

q is qth iteration, q ∈ [0, N].
The best solutions (training parameters) are determined and converted to weight and bias values (X) of ANN 

used to train the network. The methodology of ANNPSOGA is elucidated in Fig. 3.The diagram of the proposed 
approach.

Figure 3 represents the 2 models used in this paper, which are summarised as follows.
Case 1: the numerical model is applied. The network building process is conducted without the model updat-

ing process (the diagram follows the arrows 2 and 3).
Case 2: The proposed method is used to detect damages for a steel beam in the laboratory with different 

damage scenarios (the diagram follows the arrow 1 and 3). To convert the damaged properties ( D) of the beams 
from measurements into output data of the network, the following equations are applied21.
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where E0andE1 are intact and damaged stiffness.

Numerical examples
Sy bridge (Fig. 4) is a simply supported reinforced concrete beam bridge connecting Trieu son district and Tho 
Xuan district in Thanh Hoa province in the North of Vietnam. The bridge was built and has been operating 
since 1995. The bridge has two spans with the same length of 15 m. The cross-section of the bridge includes 5 T
-shaped reinforced concrete beam. The height of the beams is 1 m and the distance between them is 1.4 m. Two 
abutments are spill-through ones, whereas the pier is of two-column bent.

Structural material properties are summarised in Table 1. 

(40)D =

(

1−
E1

E0

)

∗ 100%

Figure 3.   The diagram of the proposed approach.

(a) (b)

Figure 4.   (a) The layout of the bridge and (b) cross-section of the bridge.
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A finite element (FE) model is generated by utilising MATLAB toolbox Stabil22 that is built in MATLAB 
software23. The span of the bridge is split into 30 elements using beam elements with 6 degrees of freedom at 
each node comprising translational and rotational displacements. FE model is then utilized to create input data 
(natural frequencies of the first seven modes) for the network.

The network has three layers including one input layer, one output layer, and one hidden layer. The output 
data represents structural damage characteristics (locations and levels). Data utilized to train, validate and test the 
network is randomly chosen from data sets with a rate of 70%, 15%, and 15%, respectively. The trained network 
is utilized to identify and quantify damages in the bridge based on regression values ( R-values) and the Mean 
Squared Error (MSE). To validate the effectiveness of ANNPSOGA, ANN, PSO, and ANNPSO are also used. 
PSO comprises 100 populations. Social learning and cognitive learning factors are C′ = 2 and C′ ′ = 2, whereas 
the inertial weight parameter ( w′ ) is 0.3. For ANN, no boundary condition is employed because this algorithm 
employs the GD technique to look for the best solution. 2.5% white Gaussian noise is applied to input data of 
ANNPSOGA, whereas only 1.5% is used to that of ANN and ANNPSO.

Damage cases are generated by decreasing the stiffness of elements. Stiffness parameters range from 0 to 1. 
While 1 indicates intact cases, 0 represents completely damaged cases. The data is arranged in a tabular form in 
which the row performs damage properties and the column performs natural frequencies. To reduce the com-
putational cost, we only consider one beam of the bridge (other beams have the same features).

Based on the damage scenarios described above, the number of samples ( Nsamples1 ) is calculated using Eq. (41).

where ne is the number of the element ( ne = 15 elements—with symmetric dimension; only a half of the beam is 
considered); ns is the number of damage scenarios ( ns = 50). In this case, 750 samples are used for the network.

A free‑free beam in the laboratory.  A steel beam in the laboratory is utilized to assess the performance 
of ANNPSOGA. To diminish the impact of bearing stiffness on structural dynamic characteristics, the beam was 
hung on a bar described in Fig. 5. The length of the beam is 0.6 m, the width and thickness of the cross-section 
are 0.038 m and 0.006 m, respectively. Young’s modulus of each element is selected at approximately 200 GPa 
(the material heterogeneity of the beam is taken into account). The Volumetric mass density and Poisson’s ratio 
are 7850 kg/m3 and 0.3, respectively.

To obtain the dynamic characteristics of the beam, an experimental measurement was conducted. The vibra-
tion source was generated by applying a hammer creating artificial excitation forces (Fig. 5). Accelerometers 
(PCB 356A15) were located at the edge of the beam to obtain structural dynamic behaviour. Figure 5 illustrates 
the process of making measurements of one setup.

To extract structural dynamic behaviour, the peaking pick method was applied. The intact case was first 
applied. The beam was then damaged by creating cuts (3 mm, 6 mm) in the middle of the beam. The natural 
frequencies of all cases are shown in Fig. 6 and Table 2.

A FE model is constructed to validate the experimental beam. The beam comprises 31 elements employ-
ing two-dimensional elements with three DOFs at each node including translational displacement in the X,Y
—axes, and rotational displacement in the—Zaxis. To create data for the network, the FE model of the beam has 
to be updated (model updating) to determine uncertain parameters. Because the free-free beam was used (the 
uncertainty of boundary conditions is eliminated), only the uncertainty of material properties including Young’s 
modulus of 31 beam elements and 1 volumetric mass density are used for model updating.

(41)Nsamples1 = ne ∗ ns

Table 1.   Material properties.

Parameters

Young’s modulus Poisson’s ratio Volumetric mass density

3.0 × 1010 N/m2 0.2 2450 kg/m3

Figure 5.   Experimental setup24.
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To update uncertain parameters of the beam, PSO is employed. The population is 100. The cognition learn-
ing factor and social learning factor of PSO are 0.2. The inertia weight parameter of PSO ( w′) is 0.3. The stop 
condition of the model updating process is selected based on two conditions: the deviation between calculated 
and desired outputs is lower than 10−6 or the number of iteration (100) is completed.

Results and discussion
Discussion about results of numerical examples.  Figure  7 shows that regression R-values of the 
trained network. R-values are higher than 0.9999 and the data in the test and validation data sets are located 
alongside the 45-degree line (regression line). This demonstrates that a close correspondence between predicted 
and desired results is achieved.

Figure 8 and Table 3 show that the MSE-value calculated by ANNPSOGA is the lowest, at 0.0045, whereas 
the MSE-values determined by ANN, ANNPSO are 0.0124, and 0.0057, respectively. Besides, the R-value of 
ANNPSOGA surpasses those of ANNPSO, and ANN. This means that the analytical outputs (damage location 
and severity) determined by ANNPSOGA are close to the actual results than ANNPSO, PSO, and ANN. MSE 
value is determined by ANN as the highest because this algorithm applies the GD technique, which is entrapped 
in the local minima. ANNPSO employs PSO to identify the starting point for the network, but the network is 
still trapped in local minima in the process of training the network.

ANNPSOGA demonstrates the ability to find the optimal solution because this method contains both ben-
eficial features of ANN and PSOGA. A clear illustration is that to remedy the shortcomings of separate ANN 
and metaheuristic algorithms, the capacity of each algorithm is employed at the right time during the process 
of the search for the best solution. Specifically, the GD technique first is applied to increase convergence speed. 

Figure 6.   Damaged cases: (a) intact case; (b) depth of cut—3 mm; (c) depth of cuts—6 mm.

Table 2.   Natural frequencies of the first 3 modes.

Depth of cuts (mm) f1 (Hz) f2 (Hz) f3 (Hz)

0 526.5 1410.9 2751.6

3 523.4 1409.0 2707.4

6 514.8 1405.9 2673.4
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If the network is entrapped in concave surfaces (local minima), global search techniques are utilized to escape 
elements from those disadvantageous areas. This parallel combining process is reproduced till the number of 
iterations is reached or the target is obtained.

In terms of computational cost, ANNPSOGA requires more time than ANN, but the deviation is not too sig-
nificant. PSO expends a huge amount of time on seeking the global best. Specifically, ANNPSO and ANNPSOGA, 
ANN spend 340.73 s, 81.34 s, and 14.21 s to determine the best solution, respectively, whereas PSO spends the 
most time (6109 s) because this algorithm is based on the stochastic technique in which the performance of the 
next step in numerous cases, is not improved compared to the previous ones.

Figure 9 shows that ANN and ANNPSO identify the damage location and level of trained cases inaccurately. 
For cases where the data is outside the trained dataset, some errors occur. For example, ANN and ANNPSO 
detect 53% and 57% damages occurring at element 4 (Fig. 9b). However, the real damage occurs at element 5 
(60% of damage). PSO and ANNPSOGA possibly identify damages in all cases exactly.

Discussion about results of a free‑free beam in the laboratory
Table 4 shows the natural frequencies of the beam before and after model updating.
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Figure 8.   MSE-values: (a) ANN; (b) ANNPSO; (c) ANNPSOGA.

Table 3.   Obtained results of methods for single damage cases.

Methods Mean square error (MSE) values Regression (R) values Computational cost (second-s)

PSO 6109

ANN 0.0124 0.99997 14.21

ANNPSO 0.0057 0.99998 340.73

ANNPSOGA 0.0045 1 81.34
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Figure 9.   Damage identification of element 5 applying PSO, ANN, ANNPSO and ANNPSOGA: (a) 10% 
damage and (b) 60% damage.

Table 4.   Natural frequencies before and after model updating.

Modes Before (Hz) After (Hz) Measurement (Hz)

1 525 (0.19%) 526.3 (0.03%) 526.5

2 1406 (0.28%) 1410.9 (0%) 1410.9

3 2743 (0.29%) 2751.6 (0%) 2751.6
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After model updating, the correspondence between the simulation and the measurement is obtained. The 
deviation of natural frequencies between FEM and measurement is lower than 0.03%. The updated model is 
then utilised to generate data sets for the network. The input data consists of the first three natural frequencies, 
the output data (target) comprising damage locations and levels.

The network comprises one input layer, one output layer, and one hidden layer. A hidden layer with 7 neurons 
is selected based on optimal iteration. Data utilized to train (70%), validate (15%), and test (15%) the network is 
randomly chosen from data sets. The trained network is used for damage identification of the tested beam. For 
comparison with ANNPSOGA, ANNPSO, ANN, and PSO are also used. For PSO, the population number is 
100, the values of social learning and cognitive learning factors are C′ = 2 and C′ ′ = 2, whereas the inertial weight 
parameter ( w′ ) is 0.3.

Table 5 shows obtained results of methods for single damage cases.
Table 5 shows that ANNPSOGA provides a smaller deviation between the predicted and real results com-

pared to ANNPSO, ANN, and PSO (MSE-value provided by ANNPSOGA is the lowest (0.4651) compared with 
ANNPSO, ANN, and PSO, at 0.5612, 1.0428, respectively). The R-value provided by ANNPSOGA is also higher 
than those of ANNPSO, and ANN. In terms of computational cost, the process of seeking the global best of 
PSO is most time-consuming (8594 s) compared to ANN, ANNPSOGA, and ANNPSO with 168 s, 195 s, and 
438 s, respectively.

From Fig. 10, it can conclude that PSO fails to detect damages in the considered structure. The main reason 
is that PSO relies only on stochastic techniques and cannot learn from experience to improve its performance as 
ANN. In this case, if the target function contains too little data (in this measurement, only the first three natural 
frequencies are obtained), and the research space is too large (31 elements causing many the same solutions), 
PSO cannot determine the best solution exactly. ANN, ANNPSO, and ANNPSOGA identify damage locations 
exactly. The level of damage determined by ANN, ANNPSO, and ANNPSOGA is quite close to those calculated 
by the experimental formula Eq. (40).

Conclusions and future works
In this work, a novel hybrid ANN is proposed to identify damages in structures. The core idea of this approach 
is that the stochastic search capacity of PSOGA is applied to work parallel with the GD technique to prevent the 
network from trapping in local minima throughout the process of training the network. ANNPSOGA extremely 
increases the efficiency of the conventional ANN since the fast convergence of the GD technique reduces the 
computational cost and the global search capacity of PSOGA not only possibly deals with local minima problems 
but also improves the accuracy. This solution is superior to the previous research that only applies the capacity of 
global search techniques to obtain beneficial starting points and to assist the network in removing local minima 
at the first positions. To evaluate the performance of ANNPSOGA, the numerical model and the experimental 
model are employed. The proposed method is also compared with the traditional ANN, ANNPSO, and PSO. 
Based on the obtained results, several main conclusions are drawn as follows:

Table 5.   Obtained results of methods.

Methods Mean square error (MSE) values Regression ( R ) values Computational cost (second-s)

PSO 8594

ANN 1.0428 0.9946 168

ANNPSO 0.5612 0.9985 438

ANNPSOGA 0.4651 0.9987 195
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Figure 10.   Damage identification employing ANN, PSO, ANNPSO and ANNPSOGA (a) 22% damage at 
element 16 and (b) 40% damage at element 16.
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•	 All algorithms PSO, ANN, ANNPSO, ANNPSOGA demonstrate their capacity for damage detection prob-
lems. All R-values are higher than 0.9 and MSE—values are small.

•	 Due to being based on GD technique, ANN is trapped into local minima. This leads to errors when using 
ANN for damage detection problems, especially if the complicated network contains too many local bests.

•	 PSO proves its ability when detecting the damages of numerical models accurately. However, this result is 
only achieved when the objective function contains sufficient data and information (occurs only in ideal 
conditions, when the target function can be freely chosen). Moreover, the process of seeking the best solution 
of PSO and other metaheuristic algorithms is time-consuming. This drawback is creating barriers to the real 
applications of metaheuristic algorithms when the structure is much more complicated.

•	 Although other hybrid ANNs are superior to traditional ANN in some cases, their outperforms are unstable 
and cannot thoroughly deal with local minimum problems.

•	 The parallel working of GD techniques and global search techniques possibly lessens the effect of noise on 
the regression model used for ANN.

•	 ANNPSOGA can deal with the problems of local minima of traditional ML as well as ANN and extremely 
reduces computational cost compared to other metaheuristic algorithms. Therefore, this proposed approach 
is highly promising to apply for real-world problems (large-scale structures with more elements and a large 
degree of freedom).

•	 Although ANNPSOGA has obvious advantages, it is commonly acknowledged that this algorithm is not as 
efficient as deep learning (DL) algorithms when the input is image data. The reason is that ANNPSOGA as 
well as other ANN models do not have the ability to self-extract data features from the convolutional class 
and the trained classifier at the same time.

•	 From obtained results, some main future works can be proposed as follows:

•	 This proposed approach should be employed to detect real damages to existing structures (buildings 
and bridges) in further research.

•	 The capacity of the global search technique will be employed to deal with local minimum problems of 
DL models.
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