Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Guest Edited Collection: Radioisotopes and radiochemistry in health science

Radioisotopes can be produced artificially from stable nuclei through the interaction with particles or highly energetic photons. In combination with modern detection and counting techniques, radioisotopes and radiochemical methods uniquely contribute to the health sciences. This Collection showcases salient aspects of medical radioisotope science ranging from the production, recovery and purification of radioisotopes to the methods used to attach them to biomolecules. The Collection also presents studies that highlight the importance of radiochemistry in the assessment of environmental radioactivity.


The discovery of radioactivity dates back to the year 1896, when Antoine Henri Becquerel, now the eponym of the SI unit to quantify radioactive decay rate, first described the phenomenon of a mysterious penetrating radiation originating from uranium salt1. This radiation was able to produce an image on a photographic plate. Radioactivity is a process where an unstable nucleus undergoes conversion to a different -energetically more favorable- nucleus, accompanied by the release of energy in the form of particles and photons.

The relationship between radioactivity and human health perception has been a bumpy ride. The radioactive element radium (226Ra half-life 1600 y) that was discovered in the year 18982 by Polish-French radiochemist Marie Sklodowska-Curie, the graduate student of Becquerel who would later earn herself the honour of becoming the first female Nobel prize laureate, was initially regarded as a harmless, even health-boosting natural agent. A few milligrams of radium chloride 226RaCl2 could be recovered from one metric ton of uranium ore3 through tedious radiochemical efforts. Grossly underestimating the hazards, radium was made a component of self-luminous paints4; it was also the subject of flourishing radioactive quackery5.

A later discovery, for which German radiochemist Otto Hahn received the Nobel Prize in the year 1944, ushered civilization into the “nuclear age”. Hahn –initially unknowingly- provided the radiochemical proof of barium as a product of neutron bombardment of uranium6, which signalled the existence of a thitherto-unknown phenomenon: nuclear fission. Nuclear fission could be harnessed as a source of energy, but the wide range of unstable fission products associate it with quasi everlasting environmental impact -highly geochemically mobile7 99Tc (half-life 2.1·105 y) to mention here- and dangerous levels of radioactivity.

Decades later there was the “Chernobyl disaster”8,9. Still a high schooler in Cold-War era West Germany, I vividly recall the news streaming in that stoked the populace’s fears of radioactivity like no other event before. And the event on April 26th, 1986, made us Europeans think twice about what produce to eat and to better ask where it came from. Children were barred from entering playgrounds; the time span “eight days”, the half-life of volatile fission product 131I, kept circulating in people’s heads. The “Chernobyl” and “Fukushima”10 disasters are certainly entries in the history annals of nuclear science and technology that bear witness to the blight of radioactivity.

The blessings of radioactivity, on the other hand, became apparent from the work of another radiochemist and Nobel Prize laureate, George de Hevesy. Hevesy pioneered the concept of radioactive tracers to study biological processes in vivo11, and he is widely regarded as the “father of modern nuclear medicine”12. Other sources13 name the Donner Laboratory at the University of California, Berkley, the “birthplace of nuclear medicine” and rather ascribe nuclear fatherhood to John Lawrence. The discovery of several well-known medical isotopes was claimed by the Donner Laboratory, including 14C, 18F, 15O and 201Tl. Also among them was “an isotope with a half-life of about one week”13, as personally requested by Joseph G. Hamilton from Glenn T. Seaborg (1951 Chemistry Nobelist) for use in certain thyroid studies. Iodine-131 (half-life 8.0 d) was Seaborg’s legendary answer to his request, produced at Berkeley via deuteron irradiation of tellurium. The first use of 131I to treat hypothyroidism in humans was reported by Saul Hertz on January 1st, 194114, and a series of treatment studies was published in May 194615. Ironically, the later “Chernobyl scare” 131I had become the first U.S. Food and Drug Administration approved radiopharmaceutical in 195116. Seaborg –along with Emilio Segré - also isolated metastable 99mTc (half-life 6.0 h) for the first time17. This isotope has become an invaluable tool for single photon computer tomography (SPECT). The last radioisotopes to mention in my almost chiastic introductory narrative are alpha emitters 223Ra and 224Ra18 (half-lives 11.4 d and 3.7 d), thereby taking the reader’s attention back to the element that Madame Curie discovered. One of them, 223Ra, has recently become a U.S. FDA approved pharmaceutical for the treatment of bone metastases.

Collection Overview

As the ‘Radioisotopes and radiochemistry in health science’ Collection launches, applications of short-lived positron emitter fluorine-18 (half-life 109.8 min) naturally find the strongest representation. Certainly due to fluorine’s ability to rapidly form extremely stable F-C bonds via nucleophilic or electrophilic fluorination of organic molecules, 18F is undisputedly the most widely used positron emission tomography (PET) labelling agent. Advances in 18F labelling chemistry also shed light on the more fundamental chemistry of this most reactive halogen. For instance, a new route to [18F]fluoroform has been demonstrated19, where the trifluoromethyl synthon is formed in the gas phase by passing [18F]fluoromethane over heated CoF3, one of the few binary phases that release elemental fluorine (F2) upon heating. The introduction of new 18F-labelled triazolyl-linked argininamides to target neuropeptides for the imaging of mammary carcinoma20 serves as an apt example of click chemistry-based 18F-labelling, and a Design of Experiments (DoE) approach has been reported to optimize copper-mediated radiofluorination21. The evaluation of new 18F-labelled melanoma xenograft targeting peptides is the subject of an imaging study22 that is also published as part of this Collection.

While the lightest halogen has become the workhorse of PET imaging, the heaviest (natural) halogen, astatine, has been advancing as a therapy agent. This Collection includes reports on optimized 209Bi(α,2n) cyclotron production and recovery of targeted alpha therapy (TAT) isotope 211At (7.2 h)23,24 and an investigation into astatine’s solvent extraction behaviour25. Radioiodine still plays an important role; beyond historic 131I, other iodine isotopes26 are now utilized for SPECT imaging (123I, 13.3 h) and treatment (Auger emitter 125I, 59.4 d).

Radiometals have their deserved place in the toolbox of nuclear medicine: cobalt (57Co, 271.8 d; as a surrogate for 55Co, 17.5 h) and indium (111In, 2.8 d) were used as labels for affibody monomers targeting tumours in BxPC-3 xenografted mice27. A further contribution broaches the application of nanospheres labelled with 89Zr (78.4 h)28, a positron emitter with a half-life roughly matching the in vivo circulation of antibodies.

Lanthanides are represented, as many of their easily accessible chemically similar -and thus interchangeable- radioisotopes constitute versatile agents for diagnostics and therapy. The purification of SPECT isotope 155Tb (5.3 d) is featured29, and a method for the production and recovery of the theranostic pair 132,135La (4.8 h and 19.5 h) with initial imaging and biodistribution evaluation is reported30. Alpha emitter 225Ac (10.0 d) has emerged as a TAT isotope: one contribution looks into the in-vivo redistribution of 225Ac daughter isotopes in a mouse model31; another study reports the purification of accelerator produced 225Ac using a silicotitanate sorbent32.

Surveys into the distribution and detection of naturally occurring radioactivity are an important part of the Collection as well, as they demonstrate how radioisotope science helps assess radiation doses from natural radioactivity; the “isodose” concept to Swedish residential buildings was applied to optimize topsoil removal concepts33.

As the Collection is still open for submissions on a rolling basis, this is only the beginning! May the interested colleague find in this “living” Collection a one-stop overview of the current research that puts radioactivity and radiochemistry to work for the sake of human health.


  1. 1.

    Becquerel, A. H. Sur les radiations invisibles émises par les sels d’uranium. C R Acad Sci Paris 122(8), 420–421 (1896).

    CAS  Google Scholar 

  2. 2.

    Curie, P., Curie, M., Bémont, G. Sur une nouvelle substance fortement radio-active, contenue dans la pechblende. C R Acad Sci Paris 127, 1215–1217, (1898). (note of 26 December 1898).

  3. 3.

    Carvalho F. Marie Curie and the Discovery of Radium. In: Merkel B., Schipek M. (eds) The New Uranium Mining Boom. Springer Geology. Springer, Berlin, Heidelberg, 3–13, (2011).

    Chapter  Google Scholar 

  4. 4.

    Pratt, R. M. Review of radium hazards and regulation of radium in industry. Environment International 19(5), 475–489, (1993).

    CAS  Article  Google Scholar 

  5. 5.

    Macklis, R. M. The Great Radium Scandal. Sci Am 269(2), 94–99, (1993).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hahn, O. & Strassmann, F. Ueber den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwiss 27(1), 11–15, (1939).

    ADS  CAS  Article  MATH  Google Scholar 

  7. 7.

    Lee, M. et al. Impeding 99Tc(IV) mobility in novel waste forms. Nat Commun 7, 12067, (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Smith, J. T., Beresford, N. A. Chernobyl-Catastrophe and Consequences. Springer-Verlag Berlin Heidelberg New York. ISBN 3-540-23866-2 (2005).

  9. 9.

    Grech, V. The Chernobyl Accident, the Male to Female Ratio at Birth and Birth Rates. Acta Medica 57(2), 62–67, (2014).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kim, Y., Kim, M. & Kim, W. Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy. Energy Policy 61, 822–828, (2013).

    Article  Google Scholar 

  11. 11.

    Chiewitz, O. & Hevesy, G. Radioactive Indicators in the Study of Phosphorus Metabolism in Rats. Nature 136, 754–755, (1935).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Myers, W. G. Georg Charles de Hevesy: the father of nuclear medicine. J Nucl Med 20(6), 590–594, (1979).

    CAS  PubMed  Google Scholar 

  13. 13.

    Williams, J. E. Donner Laboratory: the birthplace of nuclear medicine. J Nucl Med 40(1), 16N–20N, (1999).

    CAS  PubMed  Google Scholar 

  14. 14.

    McCready, V. R. Radioiodine – the success story of Nuclear Medicine. Eur J Nucl Med Mol Imaging 44, 179–182, (2017).

    Article  Google Scholar 

  15. 15.

    Hertz, S. & Roberts, A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc. 131, 81–6, (1946).

    CAS  Article  Google Scholar 

  16. 16.

    Stabin, M. Nuclear Medicine dosimetry. Phys Med Biol 51, R187 (2006).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Hoffman, D. C., Ghiorso, A. & Seaborg, G. T. The Transuranium People: The Inside Story,

  18. 18.

    Mastren, T. et al. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix. Sci Rep 7, 8216, (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yang, B. Y. & Gas Phase, A. Route to [18F]fluoroform with Limited Molar Activity Dilution. Sci Rep 9, 14835, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Maschauer, S. et al. 18F-labelled triazolyl-linked argininamides targeting the neuropeptide Y Y1R for PET imaging of mammary carcinoma. Sci Rep 9, 12990, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bowden, G. D. et al. A Design of Experiments (DoE) Approach Accelerates the Optimization of Copper-Mediated 18F-Fluorination Reactions of Arylstannanes. Sci Rep 9, 11370, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhang, C. et al. 18F-Labeled Cyclized α-Melanocyte-Stimulating Hormone Derivatives for Imaging Human Melanoma Xenograft with Positron Emission Tomography. Sci Rep 9, 13575, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    O’Hara, M. J. et al. Development of an autonomous solvent extraction system to isolate astatine-211 from dissolved cyclotron bombarded bismuth targets. Sci. Rep. 9, 20318, (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li, Y. et al. Investigation of a tellurium-packed column for isolation of astatine-211 from irradiated bismuth targets and demonstration of a semi-automated system. Sci Rep 9, 16960, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Aneheim, E. et al. Towards elucidating the radiochemistry of astatine – Behavior in chloroform. Sci Rep 9, 15900, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Glaser, M. et al. One-Pot Radiosynthesis and Biological Evaluation of a Caspase-3 Selective 5-[123,125I]iodo-1,2,3-triazole derived Isatin SPECT Tracer. Sci. Rep. 9, 19299, (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Rosestedt, M. et al. Improved contrast of affibody-mediated imaging of HER3 expression in mouse xenograft model through co-injection of a trivalent affibody for in vivo blocking of hepatic uptake. Sci Rep 9, 6779, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lee, J. Y. et al. Red Blood Cell Membrane Bioengineered Zr-89 Labelled Hollow Mesoporous Silica Nanosphere for Overcoming Phagocytosis. Sci Rep 9, 7419, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Webster, B. et al. Chemical Purification of Terbium-155 from Pseudo-Isobaric Impurities in a Mass Separated Source Produced at CERN. Sci Rep 9, 10884, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Aluicio-Sarduy, E. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. Sci Rep 9, 10658, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    de Kruijff, R. M. The in vivo fate of 225Ac daughter nuclides using polymersomes as a model carrier. Sci Rep 9, 11671, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Fitzsimmons, J. et al. The application of poorly crystalline silicotitanate in production of 225Ac. Sci Rep 9, 11808, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hinrichsen, Y. et al. Influence of the migration of radioactive contaminants in soil, resident occupancy, and variability in contamination on isodose lines for typical Northern European houses. Sci Rep 9, 7876, (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


I would like to extend my thanks to all colleagues for submitting their cutting edge contributions. My gratitude is also due to all peer reviewers who donated a share of their valuable time to assess and help improve these contributions, and to Nature Research as well as the staff editors of Scientific Reports for their kind invitation to propose and lead this Collection.

Author information




M.E.F. wrote the invited editorial.

Corresponding author

Correspondence to Michael E. Fassbender.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fassbender, M.E. Guest Edited Collection: Radioisotopes and radiochemistry in health science. Sci Rep 10, 340 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing