Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Guiding the HBO1 complex function through the JADE subunit

Abstract

JADE is a core subunit of the HBO1 acetyltransferase complex that regulates developmental and epigenetic programs and promotes gene transcription. Here we describe the mechanism by which JADE facilitates recruitment of the HBO1 complex to chromatin and mediates its enzymatic activity. Structural, genomic and complex assembly in vivo studies show that the PZP (PHD1–zinc-knuckle–PHD2) domain of JADE engages the nucleosome through binding to histone H3 and DNA and is necessary for the association with chromatin targets. Recognition of unmethylated H3K4 by PZP directs enzymatic activity of the complex toward histone H4 acetylation, whereas H3K4 hypermethylation alters histone substrate selectivity. We demonstrate that PZP contributes to leukemogenesis, augmenting transforming activity of the NUP98–JADE2 fusion. Our findings highlight biological consequences and the impact of the intact JADE subunit on genomic recruitment, enzymatic function and pathological activity of the HBO1 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: All JADEs form HBO1 complexes.
Fig. 2: JADE1 recruits HBO1 to the nucleosome.
Fig. 3: Structural basis for the recognition of histone H3 by JADE1PZP.
Fig. 4: JADE1PZP associates with two regions of the H3 tail.
Fig. 5: JADE1PZP binds to nucleosomes in a bivalent manner.
Fig. 6: JADE1PZP facilitates HBO1 complex association with chromatin in vivo.
Fig. 7: JADE1PZP enhances the transforming activity of NUP98–JADE2 in vivo.

Similar content being viewed by others

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 8GDX and 8GE0. All other relevant data supporting the key findings of this study are available within the paper, its Supplementary Information or from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

This paper does not report original code.

References

  1. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Schubeler, D. et al. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14, 940–950 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Mizzen, C. A. & Allis, C. D. Linking histone acetylation to transcriptional regulation. Cell. Mol. Life Sci. 54, 6–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. MacPherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature 577, 266–270 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hayashi, Y. et al. NUP98-HBO1-fusion generates phenotypically and genetically relevant chronic myelomonocytic leukemia pathogenesis. Blood Adv. 3, 1047–1060 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahashi, S. et al. HBO1-MLL interaction promotes AF4/ENL/P-TEFb-mediated leukemogenesis. eLife 10, e65872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Y. et al. High-expression HBO1 predicts poor prognosis in gastric cancer. Am. J. Clin. Pathol. 152, 517–526 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kueh, A. J., Dixon, M. P., Voss, A. K. & Thomas, T. HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol. Cell. Biol. 31, 845–860 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y. et al. The histone lysine acetyltransferase HBO1 (KAT7) regulates hematopoietic stem cell quiescence and self-renewal. Blood 139, 845–858 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Miotto, B. & Struhl, K. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37, 57–66 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Avvakumov, N. et al. Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation. Mol. Cell. Biol. 32, 689–703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saksouk, N. et al. HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol. Cell 33, 257–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lalonde, M. E. et al. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev. 27, 2009–2024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, J. et al. The scaffolding protein JADE1 physically links the acetyltransferase subunit HBO1 with its histone H3-H4 substrate. J. Biol. Chem. 293, 4498–4509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng, Y. P. et al. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J. 35, 176–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Peña, P. V. et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442, 100–103 (2006).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Champagne, K. S. et al. The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide. Proteins 72, 1371–1376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hung, T. et al. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol. Cell 33, 248–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, S. et al. The PZP domain of AF10 Senses unmodified H3K27 to regulate DOT1L-mediated methylation of H3K79. Mol. Cell 60, 319–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein, B. J. et al. The role of the PZP domain of AF10 in acute leukemia driven by AF10 translocations. Nat. Commun. 12, 4130 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein, B. J. et al. Molecular basis for the PZP domain of BRPF1 association with chromatin. Structure 28, 105–110 e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, C. K. et al. A novel NUP98-JADE2 fusion in a patient with acute myeloid leukemia resembling acute promyelocytic leukemia. Blood Adv. 6, 410–415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andrews, F. H., Strahl, B. D. & Kutateladze, T. G. Insights into newly discovered marks and readers of epigenetic information. Nat. Chem. Biol. 12, 662–668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Musselman, C. A. & Kutateladze, T. G. Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res. 39, 9061–9071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyamoto, R. & Yokoyama, A. Protocol for fractionation-assisted native ChIP (fanChIP) to capture protein-protein/DNA interactions on chromatin. STAR Protoc. 2, 100404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  28. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruthenburg, A. J. et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145, 692–706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dalvai, M. et al. A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Rep. 13, 621–633 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Altaf, M. et al. Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol. Cell 28, 1002–1014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  ADS  PubMed  Google Scholar 

  33. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klein, B. J. et al. The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep. 6, 325–335 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gatchalian, J. et al. Dido3 PHD modulates cell differentiation and division. Cell Rep. 4, 148–158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Becht, D. C. et al. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain. Nat. Commun. 14, 697 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tencer, A. H. et al. Covalent modifications of histone H3K9 promote binding of CHD3. Cell Rep. 21, 455–466 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Musselman, C. A. et al. Binding of PHF1 tudor to H3K36me3 enhances nucleosome accessibility. Nat. Commun. 4, 2969 (2013).

    Article  ADS  PubMed  Google Scholar 

  40. Yokoyama, A., Kawaguchi, Y., Kitabayashi, I., Ohki, M. & Hirai, K. The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology 279, 401–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24, 5639–5649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okuda, H. & Yokoyama, A. Myeloid progenitor transformation assay. Bio Protoc. 7, e2626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Sato, I. Yokoyama, K. Ito, E. Kanai and A. Yokoyama for technical assistance. This work was supported in part by grants from the National Institutes of Health: HL151334, GM135671, GM125195, CA252707 and AG067664 to T.G.K., GM131626 and GM139564 to M.G.P., from the Japan Society for the Promotion of Science (JSPS) KAKENHI grants (22H03109 and 22KK0119) to A.Y. and A.K. and from the Canadian Institutes of Health Research (CIHR) (FDN-143314, PJT-178367) to J.C. This work was also supported in part by research funds to A.Y. from the Yamagata prefectural government and the city of Tsuruoka.

Author information

Authors and Affiliations

Authors

Contributions

N.G., A.K., C.L., K.L.C., J.L., A.T.G., N.S., B.J.K., Y.K. and S.A. performed experiments and, together with A.J.R., M.G.P., J.C., A.Y. and T.G.K., analyzed the data. A.Y. and T.G.K. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Jacques Côté, Akihiko Yokoyama or Tatiana G. Kutateladze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Jun Qin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editors: Sara Osman and Carolina Perdigoto, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–3.

Reporting Summary

Peer Review File

Supplementary Data

Source data for Supplementary Information.

Source data

Source Data Fig. 7

ChIP–seq tags, ChIP–qPCR, expression and colony-forming data.

Source Data Figs. 1, 2 and 6

Uncropped blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaurav, N., Kanai, A., Lachance, C. et al. Guiding the HBO1 complex function through the JADE subunit. Nat Struct Mol Biol (2024). https://doi.org/10.1038/s41594-024-01245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41594-024-01245-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing