Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic molecular architecture and substrate recruitment of cullin3–RING E3 ligase CRL3KBTBD2

Abstract

Phosphatidylinositol 3-kinase α, a heterodimer of catalytic p110α and one of five regulatory subunits, mediates insulin- and insulin like growth factor-signaling and, frequently, oncogenesis. Cellular levels of the regulatory p85α subunit are tightly controlled by regulated proteasomal degradation. In adipose tissue and growth plates, failure of K48-linked p85α ubiquitination causes diabetes, lipodystrophy and dwarfism in mice, as in humans with SHORT syndrome. Here we elucidated the structures of the key ubiquitin ligase complexes regulating p85α availability. Specificity is provided by the substrate receptor KBTBD2, which recruits p85α to the cullin3–RING E3 ubiquitin ligase (CRL3). CRL3KBTBD2 forms multimers, which disassemble into dimers upon substrate binding (CRL3KBTBD2–p85α) and/or neddylation by the activator NEDD8 (CRL3KBTBD2~N8), leading to p85α ubiquitination and degradation. Deactivation involves dissociation of NEDD8 mediated by the COP9 signalosome and displacement of KBTBD2 by the inhibitor CAND1. The hereby identified structural basis of p85α regulation opens the way to better understanding disturbances of glucose regulation, growth and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of CRL3KBTBD2 assembly.
Fig. 2: Interface analysis of CRL3KBTBD2 assembly.
Fig. 3: Cryo-EM structure of the CRL3KBTBD2–p85α.
Fig. 4: Structure of the CRL3KBTBD2~N8 and CRL3KBTBD2~N8–CSNH138A.
Fig. 5: Structure of CRL3KBTBD2~N8–CSNH138A and interface analysis.
Fig. 6: CRL3KBTBD2 catalytic cycle.

Similar content being viewed by others

Data availability

Coordinates and maps associated with data reported in this manuscript were deposited to the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB) with accession numbers EMD-34199 and PDB 8GQ6 (CRL3KBTBD2 dimer), EMD-34451 and PDB 8H35 (CRL3KBTBD2 octamer), EMD-34450 and PDB 8H34 (CRL3KBTBD2 hexamer), EMD-34449 and PDB 8H33 (CRL3KBTBD2 tetramer), EMD-34453 and PDB 8H37 (CRL3KBTBD2–p85α tetramer), EMD-34452 and PDB 8H36 (CRL3KBTBD2–p85α dimer), EMD-34454 (CRL3KBTBD2–p85α local), EMD-34474 and PDB 8H3R (CRL3KBTBD2~N8), EMD-34467 and PDB 8H3F (CRL3KBTBD2–CSN), EMD-34466 (CRL3KBTBD2–CSNΔ3/8), EMD-34462 and PDB 8H3A (CRL3KBTBD2~N8Δ–CSN), EMD-34463 (CRL3KBTBD2~N8Δ–CSNΔ3/8), EMD-34455 and PDB 8H38 (CRL3KBTBD2~N8–CSNH138A), EMD-34457 (CRL3KBTBD2~N8–CSNH138A,CSN1/3/7/8 local), EMD-34458 (CRL3KBTBD2~N8–CSNH138A, N8/CSN5/6 local), EMD-34456 (CRL3KBTBD2~N8–CSNH138A, CUL3CTD~N8–CSN1/2/4/5/6 local), EMD-34459 (CRL3KBTBD2~N8–CSNH138A, composite map after local refinement), EMD-34460 (CRL3KBTBD2~N8–CSNH138A, Δ3/8), EMD-34461(CRL3KBTBD2~N8–CSNH138A, 2:2), EMD-34473 and PDB 8H3Q (CUL3–RBX1–CAND1). Source data are provided with this paper.

References

  1. Fritsch, R. & Downward, J. SnapShot: Class I PI3K isoform signaling. Cell 154, 940 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fox, M., Mott, H. R. & Owen, D. Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem. Soc. Trans. 48, 1397–1417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110 alpha in insulin signaling. Cell 127, 27–41 (2006).

    Google Scholar 

  5. Liu, X. et al. Cryo-EM structures of PI3Kalpha reveal conformational changes during inhibition and activation. Proc. Natl Acad. Sci. USA 118, e2109327118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsolakos, N. et al. Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors. Proc. Natl Acad. Sci. USA 115, 12176–12181 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang, Z. et al. Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice. Proc. Natl Acad. Sci. USA 113, E6418–E6426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Z., Gallagher, T., Scherer, P. E. & Beutler, B. Tissue-specific disruption of Kbtbd2 uncovers adipocyte-intrinsic and -extrinsic features of the teeny lipodystrophy syndrome. Proc. Natl Acad. Sci. USA 117, 11829–11835 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Avila, M. et al. Clinical reappraisal of SHORT syndrome with PIK3R1 mutations: toward recommendation for molecular testing and management. Clin. Genet. 89, 501–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, N. et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Cardote, T. A. F., Gadd, M. S. & Ciulli, A. Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure 25, 901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lumpkin, R. J., Baker, R. W., Leschziner, A. E. & Komives, E. A. Structure and dynamics of the ASB9 CUL-RING E3 ligase. Nat. Commun. 11, 2866 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Angers, S. et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Sarikas, A., Hartmann, T. & Pan, Z. Q. The cullin protein family. Genome Biol. 12, 220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deshaies, R. J. & Joazeiro, C. A. P. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Baek, K., Scott, D. C. & Schulman, B. A. NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr. Opin. Struct. Biol. 67, 101–109 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Baek, K. et al. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Nature 578, 461 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Lin, H. et al. Basis for metabolite-dependent Cullin-RING ligase deneddylation by the COP9 signalosome. Proc. Natl Acad. Sci. USA 117, 4117–4124 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Chudasama, K. K. et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am. J. Hum. Genet. 93, 150–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, X. et al. Cand1-mediated adaptive exchange mechanism enables variation in F-box protein expression. Mol. Cell 69, 773–786 e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pierce, N. W. et al. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153, 206–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, P., Song, J. B. & Ye, D. CRL3s: the BTB-CUL3-RING E3 ubiquitin ligases. Adv. Exp. Med. Biol. 1217, 211–223 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Yamamoto, M., Kensler, T. W. & Motohashi, H. The Keap1-Nrf2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, X. M. et al. Novel insights into the SPOP E3 ubiquitin ligase: from the regulation of molecular mechanisms to tumorigenesis. Biomed. Pharmacother. 149, 112882 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Canning, P., Sorrell, F. J. & Bullock, A. N. Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 88, 101–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ji, A. X. & Prive, G. G. Crystal structure of KLHL3 in complex with Cullin3. PLoS ONE 8, e60445 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Kostrhon, S. et al. CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation. Nat. Chem. Biol. 17, 1075–1083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hopf, L. V. M. et al. Structure of CRL7(FBXW8) reveals coupling with CUL1-RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation. Nat. Struct. Mol. Biol. 29, 854–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Welcker, M. et al. Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 27, 2531–2536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohamed, W. I. et al. The CRL4(DCAF1) cullin-RING ubiquitin ligase is activated following a switch in oligomerization state. EMBO J. 40, e108008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Stogios, P. J., Downs, G. S., Jauhal, J. J., Nandra, S. K. & Prive, G. G. Sequence and structural analysis of BTB domain proteins. Genome Biol. 6, R82 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Canning, P. et al. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J. Biol. Chem. 288, 7803–7814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, X. C., Zhang, D., Hannink, M. & Beamer, L. J. Crystal structure of the Kelch domain of human Keap1. J. Biol. Chem. 279, 54750–54758 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Fischer, E. S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147, 1024–1039 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin–protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Backer, J. M. et al. Phosphatidylinositol 3′-kinase is activated by association with Irs-1 during insulin stimulation. EMBO J. 11, 3469–3479 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Piccione, E. et al. Phosphatidylinositol 3-kinase P85 Sh2 domain specificity defined by direct phosphopeptide Sh2 domain binding. Biochemistry 32, 3197–3202 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Batra-Safferling, R., Granzin, J., Modder, S., Hoffmann, S. & Willbold, D. Structural studies of the phosphatidylinositol 3-kinase (PI3K) SH3 domain in complex with a peptide ligand: role of the anchor residue in ligand binding. Biol. Chem. 391, 33–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Musacchio, A., Cantley, L. C. & Harrison, S. C. Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 alpha subunit. Proc. Natl Acad. Sci. USA 93, 14373–14378 (1996).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Mandelker, D. et al. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl Acad. Sci. USA 106, 16996–17001 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Zhuang, M. et al. Structures of SPOP–substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol. Cell 36, 39–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lo, S. C., Li, X., Henzl, M. T., Beamer, L. J. & Hannink, M. Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 25, 3605–3617 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dyment, D. A. et al. Mutations in PIK3R1 cause SHORT syndrome. Am. J. Hum. Genet. 93, 158–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thauvin-Robinet, C. et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am. J. Hum. Genet. 93, 141–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masunaga, Y. et al. Insulin resistant diabetes mellitus in SHORT syndrome: case report and literature review. Endocr. J. 68, 111–117 (2021).

    Article  PubMed  Google Scholar 

  49. Schroeder, C. et al. PIK3R1 mutations in SHORT syndrome. Clin. Genet. 86, 292–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Marzollo, A. et al. A novel germline variant in PIK3R1 results in SHORT syndrome associated with TAL/LMO T-cell acute lymphoblastic leukemia. Am. J. Hematol. 95, E335–E338 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Goncalves, A. C. G. et al. SHORT syndrome in an adult Brazilian patient. Am. J. Med. Genet. A 188, 1635–1638 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Cavadini, S. et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature 531, 598–603 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Emberley, E. D., Mosadeghi, R. & Deshaies, R. J. Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. J. Biol. Chem. 287, 29679–29689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Faull, S. V. et al. Structural basis of Cullin 2 RING E3 ligase regulation by the COP9 signalosome. Nat. Commun. 10, 3814 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. Lyapina, S. et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382–1385 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Schwechheimer, C. et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292, 1379–1382 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Lo, S. C. & Hannink, M. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Mol. Cell. Biol. 26, 1235–1244 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calabrese, M. F. et al. A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases. Nat. Struct. Mol. Biol. 18, 947–949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharon, M. et al. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure 17, 31–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Lingaraju, G. M. et al. Crystal structure of the human COP9 signalosome. Nature 512, 161–165 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Enchev, R. I. et al. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep. 2, 616–627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Horn-Ghetko, D. et al. Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. Nature 590, 671–676 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Mosadeghi, R. et al. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. eLife 5, e12102 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Scott, D. C. et al. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157, 1671–1684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cope, G. A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Sato, Y. et al. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455, 358–362 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Wu, S. et al. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat. Commun. 4, 1642 (2013).

    Article  PubMed  ADS  Google Scholar 

  69. Baek, K. et al. Systemwide disassembly and assembly of SCF ubiquitin ligase complexes. Cell 186, 1895–1911 e21 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, J. et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10, 1519–1526 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Goldenberg, S. J. et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119, 517–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Duda, D. M. et al. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 21, 257–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shaaban, M. et al. Structural and mechanistic insights into the CAND1-mediated SCF substrate receptor exchange. Mol. Cell 83, 2332–2346 e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Choo, Y. Y. & Hagen, T. Mechanism of cullin3 E3 ubiquitin ligase dimerization. PLoS ONE 7, e41350 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. Kushi, R., Hirota, Y. & Ogawa, W. Insulin resistance and exaggerated insulin sensitivity triggered by single-gene mutations in the insulin signaling pathway. Diabetol. Int. 12, 62–67 (2021).

    Article  PubMed  Google Scholar 

  76. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  78. Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  84. Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383 e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  89. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Center of Cryo-Electron Microscopy, Fudan University for assistance with cryo-EM data collection. We thank X. Yu Shanghai at Institute of Materia Medica, Chinese Academy of Sciences for assistance with cryo-EM grids screening. This work was supported by grants from the National Natural Science Foundation of China (grant no. 81900729 to L.S.), the Science and Technology Commission of Shanghai Municipality (grant no. 23ZR1413700 to L.S.), the US National Institutes of Health (grant nos. K99 DK115766 and R00 DK115766 to Z.Z.; R01 AI125581 and U19 AI100627 to B.B.) and the Lyda Hill Foundation (B.B.).

Author information

Authors and Affiliations

Authors

Contributions

L.S. and B.B. initiated, planned and supervised the project. Y.H. performed the protein expression and purification with assistance from Y.W., A.H., W.Z., L.H. and Q.L. Z.C., X.Z. and Q.M. collected the cryo-EM data and solved the structures with assistance from Y.H. Q.M. and L.S. analyzed the structures. Y.Y. and C.P. performed the XL-MS assay. Z.Z. and Y.X. performed the interaction assays of KBTBD2 and p85α mutations. The manuscript was written by Y.H., L.S., Z.Z., E.M.Y.M. and B.B., and was approved by all the authors.

Corresponding authors

Correspondence to Zhenguo Chen, Bruce Beutler or Lei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Gilbert Privé and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Dimitris Typas was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Size exclusion chromatography and negative stain micrographs of KBTBD2, p85α, CRL3KBTBD2, CRL3KBTBD2–p85α and CRL3KBTBD2~N8.

ae, Size exclusion chromatography and negative stain micrographs of KBTBD2 (a), p85α (b), CRL3KBTBD2 (c), CRL3KBTBD2–p85α (d) and CRL3KBTBD2~N8 (e). Left: SEC profiles, the chromatographic separation of the standard proteins is shown as a grey line and the theoretical molecular weights are shown above. Middle: Coomassiestained SDS-PAGE analysis of the peak fraction of SEC. Right: representative micrographs. The purification was repeated independently more than 3 times with similar results.

Source data

Extended Data Fig. 2 Size exclusion chromatography and negative stain micrographs of CSN in complex with neddylated and non-neddylated CRL3KBTBD2.

a, CRL3KBTBD2. b, CSN. c, CSNH138A. d, CRL3KBTBD2–CSN. e, CRL3KBTBD2~N8Δ–CSN. f, CRL3KBTBD2~N8–CSNH138A. Left: SEC profiles, the chromatographic separation of the standard proteins is shown as a grey line and the theoretical molecular weights are shown above. Middle: Coomassiestained SDS-PAGE analysis of the peak fraction of SEC. Right: representative micrographs. The purification was repeated independently more than 3 times with similar results.

Source data

Extended Data Fig. 3 Structure of the CRL3KBTBD2 monomer.

a, Ribbon representation of CRL3KBTBD2 monomer with subdomains colored differently. b, The cryo-EM map and the model of the CUL3CTD and RBX1, showing that the N-terminal β-strand of RBX1 (RBX1NTD) inserts into the CUL3CTD, forming a stable β-sheet. The subdomains of the CUL3CTD are colored individually. Three zinc ions in RBX1 are shown as green spheres. c, Analysis of interface between KBTBD2 and CUL3. The residues located at the contact surface are shown as sticks. d, Ribbon representation of the KBTBD2Kelch domain in side and top views. The Kelch domain contains six kelch-repeats and each consists of four β-strands, packing into a helix cluster structure. e, Superposition of five Kelch domains: KLHL12 (PDB: 2VPJ), KLHL2 (PDB: 2XN4), KBTBD10 (PDB: 2WOZ), KEAP1 (PDB: 2FLU), KBTBD2 (this study). f-g, Sequence and structural alignment of BTB domain of KBTBD2 with another four BTBs.

Extended Data Fig. 4 Size-exclusion chromatography and negative staining EM micrographs of CRL3KBTBD2 mutants.

a, Size-exclusion chromatography (SEC) comparison of CRL3KBTBD2 mutants on H24 (Q489A, H490A, Q492A, T494A, V496A), H25 (R537A, K542A, S544A), WHB (S713A, R714A, K715A, K716A). The chromatographic separation of the standard proteins is shown as a grey line and the theoretical molecular weights are shown above. b-f, Coomassie-stained SDS-PAGE gel (Left) and negative-stain EM analysis (Right) of the CRL3KBTBD2_WT (b), CRL3KBTBD2_H24 (c), CRL3KBTBD2_H25 (d), CRL3KBTBD2_WHB (e), CRL3KBTBD2_H2425 (f), elution fractions. The purification was repeated independently more than 3 times with similar results.

Source data

Extended Data Fig. 5 Chemical cross-linking mass spectrometry (XL-MS) analysis of the KBTBD2–p85α complex.

a, The circular plot of cross-links identified for the KBTBD2-p85α complex. b, KBTBD2–p85α inter- (blue) and intra-subunit (orange) cross-links projected onto the cryo-EM structure of CRL3KBTBD2–p85α. c, Euclidean distances for cross-links shown in (a). d-e, Cryo-EM density maps of CRL3KBTBD2–p85α dimer fitted with the corresponding models of KBTBD2 and p85α. The domains are labeled in different colors.

Extended Data Fig. 6 Structure comparison of CRL3KBTBD2 and CRL3KBTBD2–p85α.

a, b, Side view and bottom view of CRL3KBTBD2 octamer (a) and hexamer (b). c, d, Side view and bottom view of CRL3KBTBD2 tetramer (c) and CRL3KBTBD2–p85α tetramer (d), showing that CRL3KBTBD2 tetramer contains two dimers forming an angle of ~90°, while CRL3KBTBD2–p85α tetramer contains two dimers forming an angle of ~180°. e, Fitting CRL3KBTBD2–p85α dimer models into CRL3KBTBD2 octamer maps, showing that p85α clashes with the neighboring KBTBD2s. f, Structural comparison of CRL3KBTBD2 octamer (gray) with two neighbor CRL3KBTBD2–p85α dimers (colored), the clashes area is indicated by circle. g, The details of clashes between KBTBD2 (gray) and p85α (colored).

Extended Data Fig. 7 Structure analysis of CRL3KBTBD2~N8 structure.

a, Cryo-EM density map and models of the CUL3CTD and RBX1 in CRL3KBTBD2~N8 structure. The subdomains of CUL3CTD are colored individually. The neddylation site Lys712 is shown as green spheres. b, Neddylation assay of CRL3KBTBD2. n, the number of biological independent replicates. c-e, Structural comparison of CRL3KBTBD2~N8 with other neddylatd CRLs: CUL1~N8 (PDB: 6TTU) and CUL5 ~N8 (PDB: 3DQV). The N8 sides are shown as atoms in green. f-h, Fitting CRL3KBTBD2~N8 into CRL3KBTBD2 multimer maps indicates structural clashes (circled) between RBX1 and CUL34HB subdomain from the neighboring CUL3CTD.

Extended Data Fig. 8 Cryo-EM maps of CSN in complex with neddylated or non-neddylated CRL3KBTBD2.

a, Overall Cryo-EM maps of CRL3KBTBD2–CSN containing one whole CSN molecules, and (b) one CSN missing the CSN3/8 density. c, Overall Cryo-EM maps of CRL3Kbtbd2~N8Δ–CSN containing one whole CSN molecules, and (d) one CSN missing the CSN3/8 density. e, Overall Cryo-EM maps of CRL3KBTBD2~N8–CSNH138A containing two CSN molecules (one with the whole CSN and another missing the CSN3/8 density), (f) CRL3KBTBD2~N8–CSNH138A containing one whole CSN and missing the CUL3/RBX1 subunits, and (g) CRL3KBTBD2~N8–CSNH138A containing one CSN missing CSN3/8 subunits and weak density in CUL3/RBX1 subunits. h, Summary of the conformation distribution of each state and the resolution of each structure.

Extended Data Fig. 9 Structural comparison of CSN in complex with neddylated or non-neddylated CRL3KBTBD2.

a, Structural comparison of CSN in apo CSN (gray) and CRL3KBTBD2~N8–CSNH138A (colored). b, Comparison of CSN in apo CSN (gray) and CRL3KBTBD2–CSN (colored). c, Comparison of CSN in apo CSN (gray) and CRL3KBTBD2~N8Δ–CSN (colored). d, Comparison of CSN in CRL3KBTBD2~N8Δ–CSN (gray) and CRL3KBTBD2~N8–CSNH138A (colored). e, Comparison of CSN in CRL3KBTBD2–CSN (gray) and CRL3KBTBD2~N8–CSNH138A (colored). f-i, The CSN5/6 heterodimers in apo CSN (f), CRL3KBTBD2~N8–CSNH138A ‘deactivating’ state (g), CRL3KBTBD2~N8Δ–CSN ‘deactivated’ state (h) and CRL3KBTBD2–CSN ‘inhibited’ state (i) are shown in cartoon representation. j, Alignment of RBX1 between different states of CRL3KBTBD2. k, Alignment of CUL3WHB and CUL3WHA subdomains between different states of CRL3KBTBD2. The CUL3WHB structures of different states were displayed at right.

Extended Data Fig. 10 Structure of the CUL3–RBX1–CAND1 complex.

a, The schematic representation of the domain composition of CAND1. b, Cryo-EM density of CAND1 and ribbon model of the CUL3–RBX1–CAND1 complex. The neddylation site K712 in WHB subdomain is shown in green spheres. c, d, Superimposing KBTBD2BTB-BACK/CUL3NTD structure with CUL3–RBX1–CAND1, showing that CAND1 clashes with BTB domain. The KBTBD2BTB-BACK is shown in gray surface. e, the interface between CAND1 N-terminal arch and CUL3WHB. f, Superimposition of the CUL3–RBX1–CAND1 model (multi-colored) with CUL1–RBX1–CAND1 (PDB: 1U6G, gray) and CUL4B–RBX1–CAND1 (PDB: 4AOC, blue).

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Tables 1–3 and captions for Videos 1–5.

Reporting Summary

Peer Review File

Supplementary Video 1

Structural assembly of CRL3KBTBD2 dimer, tetramer, hexamer and octamer.

Supplementary Video 2

Substrate recruitment of CRL3KBTBD2, showing the structure transition from CRL3KBTBD2 to CRL3KBTBD2–p85α.

Supplementary Video 3

Activation of CRL3KBTBD2 by NEDD8, showing the structure transition from CRL3KBTBD2 to CRL3KBTBD2~N8.

Supplementary Video 4

Structure transition from activated state (CRL3KBTBD2~N8) to deactivating state CRL3KBTBD2~N8–CSNH138A.

Supplementary Video 5

Structure transition from deactivating state CRL3KBTBD2~N8–CSNH138A to deactivated state CRL3KBTBD2~N8Δ–CSN.

Source data

Source Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 1

Original SDS–PAGE.

Source Data Extended Data Fig. 2

Original SDS–PAGE.

Source Data Extended Data Fig. 4

Original SDS–PAGE.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhang, Z., Mao, Q. et al. Dynamic molecular architecture and substrate recruitment of cullin3–RING E3 ligase CRL3KBTBD2. Nat Struct Mol Biol 31, 336–350 (2024). https://doi.org/10.1038/s41594-023-01182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01182-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing