Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KsgA facilitates ribosomal small subunit maturation by proofreading a key structural lesion

Abstract

Ribosome assembly is orchestrated by many assembly factors, including ribosomal RNA methyltransferases, whose precise role is poorly understood. Here, we leverage the power of cryo-EM and machine learning to discover that the E. coli methyltransferase KsgA performs a ‘proofreading’ function in the assembly of the small ribosomal subunit by recognizing and partially disassembling particles that have matured but are not competent for translation. We propose that this activity allows inactive particles an opportunity to reassemble into an active state, thereby increasing overall assembly fidelity. Detailed structural quantifications in our datasets additionally enabled the expansion of the Nomura assembly map to highlight rRNA helix and r-protein interdependencies, detailing how the binding and docking of these elements are tightly coupled. These results have wide-ranging implications for our understanding of the quality-control mechanisms governing ribosome biogenesis and showcase the power of heterogeneity analysis in cryo-EM to unveil functionally relevant information in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KsgA treatment of 30SΔksgA particles produces a heterogeneous structural ensemble.
Fig. 2: Analysis of KsgA-treated 30SΔksgA particles with MAVEn reveals large structural domains that cooperatively interconvert.
Fig. 3: KsgA binds a diverse array of assembly states.
Fig. 4: Substrate engagement by KsgA displaces a gatekeeping rRNA helix.
Fig. 5: Nearly mature SSUs accumulate in the absence of KsgA.
Fig. 6: KsgA recognizes and remodels inactive subunits.
Fig. 7: Network analysis reveals assembly dependency map for KsgA-treated SSUs.

Similar content being viewed by others

Data availability

The density map and the model for the KsgA-bound 30SΔksgA and untreated 30SΔksgA structures were deposited in the Electron Microscopy Data Bank under codes EMD-28720 and EMD-28692, respectively, and in the Protein Data Bank using codes 8EYT and 8EYQ, respectively. EMDB and PDB codes are also indicated in Table 1. Unfiltered particle stacks were deposited at EMPIAR with the following IDs: untreated dataset (EMPIAR-11529), small KsgA-treated dataset used for cryoDRGN and4MAVEn (EMPIAR-11526), and large KsgA-treated dataset used for high-resolution reconstruction of the KsgA-bound structure (EMPIAR-11528). Trained cryoDRGN models have been deposited at Zenodo at https://doi.org/10.5281/zenodo.7884215. Source data are provided with this paper.

Code availability

The MAVEn software, including scripts for on-the-fly reconstruction and analysis and voxel PCA, is available at: https://github.com/lkinman/MAVEn.

References

  1. Shajani, Z., Sykes, M. T. & Williamson, J. R. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80, 501–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Duss, O., Stepanyuk, G. A., Puglisi, J. D. & Williamson, J. R. Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rodgers, M. L. & Woodson, S. A. Transcription increases the cooperativity of ribonucleoprotein assembly. Cell 179, 1370–1381(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Popova, A. M. & Williamson, J. R. Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J. Am. Chem. Soc. 136, 2058–2069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pletnev, P. et al. Comprehensive functional analysis of Escherichia coli ribosomal RNA methyltransferases. Front. Genet. 11, 97 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mangat, C. S. & Brown, E. D. Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly. Mol. Microbiol. 70, 1051–1053 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Van Knippenberg, P. H., Van Kimmenade, J. M. & Heus, H. A. Phylogeny of the conserved 3′ terminal structure of the RNA of small ribosomal subunits. Nucleic Acids Res. 12, 2595–2604 (1984).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Poldermans, B., Roza, L. & Van Knippenberg, P. H. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions. J. Biol. Chem. 254, 9094–9100 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Poldermans, B., Van Buul, C. P. & Van Knippenberg, P. H. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. II. The effect of the absence of the methyl groups on initiation of protein biosynthesis. J. Biol. Chem. 254, 9090–9093 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Poldermans, B., Goosen, N. & Van Knippenberg, P. H. Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16 S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein synthesis. J. Biol. Chem. 254, 9085–9089 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Lafontaine, D. L., Preiss, T. & Tollervey, D. Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol. Cell. Biol. 18, 2360–2370 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kyuma, T., Kizaki, H., Ryuno, H., Sekimizu, K. & Kaito, C. 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus. Biochimie 119, 166–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Chiok, K. L., Addwebi, T., Guard, J. & Shah, D. H. Dimethyl adenosine transferase (KsgA) deficiency in Salmonella enterica Serovar Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens. Appl. Environ. Microbiol. 79, 7857–7866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cunningham, P. R. et al. Site-specific mutation of the conserved m62A m62A residues of E. coli 16S ribosomal RNA. Effects on ribosome function and activity of the ksgA methyltransferase. Biochim. Biophys. Acta 1050, 18–26 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Connolly, K., Rife, J. P. & Culver, G. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol. Microbiol. 70, 1062–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Himeno, H. et al. A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res. 32, 5303–5309 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leong, V., Kent, M., Jomaa, A. & Ortega, J. Escherichia coli rimM and yjeQ null strains accumulate immature 30S subunits of similar structure and protein complement. RNA 19, 789–802 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thurlow, B. et al. Binding properties of YjeQ (RsgA), RbfA, RimM and Era to assembly intermediates of the 30S subunit. Nucleic Acids Res. 44, 9918–9932 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks. Nat. Methods 18, 176–185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Held, W. A., Ballou, B., Mizushima, S. & Nomura, M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J. Biol. Chem. 249, 3103–3111 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Mizushima, S. & Nomura, M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature 226, 1214 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Stern, S., Powers, T., Changchien, L. M. & Noller, H. F. RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 244, 783–790 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006). [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  25. Qin, D., Liu, Q., Devaraj, A. & Fredrick, K. Role of helix 44 of 16S rRNA in the fidelity of translation initiation. RNA 18, 485–495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Scheres, S. H. Processing of structurally heterogeneous cryo-EM Data in RELION. Methods Enzymol. 579, 125–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Kinman, L. F., Powell, B. M., Zhong, E. D., Berger, B. & Davis, J. H. Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN. Nat. Protoc. 18, 319–339 (2023).

    CAS  PubMed  Google Scholar 

  29. Davis, J. H. & Williamson, J. R. Structure and dynamics of bacterial ribosome biogenesis. Philos. Trans. R. Soc. Lond. Ser. B 372, 20160181 (2017).

    Article  Google Scholar 

  30. Davis, J. H. et al. Modular assembly of the bacterial large ribosomal subunit. Cell 167, 1610–1622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mulder, A. M. et al. Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 330, 673–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sashital, D. G. et al. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife 3, e04491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nomura, M. Biosynthesis of bacterial ribosomes. Symp. Soc. Dev. Biol. 30, 195–199 (1974).

    CAS  PubMed  Google Scholar 

  34. Schedlbauer, A. et al. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. Sci. Adv. 7, eabf7547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stephan, N. C., Ries, A. B., Boehringer, D. & Ban, N. Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA. Nucleic Acids Res. 49, 6389–6398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Farrell, H. C., Scarsdale, J. N. & Rife, J. P. Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J. Mol. Biol. 339, 337–353 (2004).

    Article  PubMed  Google Scholar 

  37. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. eLife 7, e36861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. O’Farrell, H. C., Musayev, F. N., Scarsdale, J. N. & Rife, J. P. Control of substrate specificity by a single active site residue of the KsgA methyltransferase. Biochemistry 51, 466–474 (2012).

    Article  PubMed  Google Scholar 

  40. Jomaa, A. et al. Functional domains of the 50S subunit mature late in the assembly process. Nucleic Acids Res. 42, 3419–3435 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Razi, A. et al. Role of Era in assembly and homeostasis of the ribosomal small subunit. Nucleic Acids Res. 47, 8301–8317 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ni, X. et al. YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit. Nucleic Acids Res. 44, 8442–8455 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melero, R. et al. Continuous flexibility analysis of SARS-CoV-2 spike prefusion structures. IUCrJ 7, 1059–1069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tagare, H. D., Kucukelbir, A., Sigworth, F. J., Wang, H. & Rao, M. Directly reconstructing principal components of heterogeneous particles from cryo-EM images. J. Struct. Biol. 191, 245–262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haselbach, D. et al. Structure and conformational dynamics of the human spliceosomal Bact complex. Cell 172, 454–464 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Hopfield, J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jomaa, A. et al. Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. RNA 17, 697–709 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jahagirdar, D. et al. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. RNA 26, 2017–2030 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zamir, A., Miskin, R. & Elson, D. Interconversions between inactive and active forms of ribosomal subunits. FEBS Lett. 3, 85–88 (1969).

    Article  CAS  PubMed  Google Scholar 

  51. Sparling, P. F. Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome. Science 167, 56–58 (1970).

    Article  CAS  PubMed  Google Scholar 

  52. Cunningham, P. R., Richard, R. B., Weitzmann, C. J., Nurse, K. & Ofengand, J. The absence of modified nucleotides affects both in vitro assembly and in vitro function of the 30S ribosomal subunit of Escherichia coli. Biochimie 73, 789–796 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Igarashi, K. et al. Relationship between methylation of adenine near the 3′ end of 16-S ribosomal RNA and the activity of 30-S ribosomal subunits. Eur. J. Biochem. 113, 587–593 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Inoue, K., Basu, S. & Inouye, M. Dissection of 16S rRNA methyltransferase (KsgA) function in Escherichia coli. J. Bacteriol. 189, 8510–8518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seffouh, A. et al. RbgA ensures the correct timing in the maturation of the 50S subunits functional sites. Nucleic Acids Res. 50, 10801–10816 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dutca, L. M. & Culver, G. M. Assembly of the 5′ and 3′ minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J. Mol. Biol. 376, 92–S108 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Jagannathan, I. & Culver, G. M. Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J. Mol. Biol. 330, 373–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Woodson, S. A. RNA folding pathways and the self-assembly of ribosomes. Acc. Chem. Res. 44, 1312–1319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodgers, M. L. & Woodson, S. A. A roadmap for rRNA folding and assembly during transcription. Trends Biochem. Sci. 46, 889–901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rabuck-Gibbons, J. N., Lyumkis, D. & Williamson, J. R. Quantitative mining of compositional heterogeneity in cryo-EM datasets of ribosome assembly intermediates. Structure 30, 498–509(2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, M. & Ludtke, S. J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 18, 930–936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sykes, M. T. & Williamson, J. R. A complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38, 197–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Shteynberg, D. et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell Proteom. 10, M111 007690 (2011).

    Article  Google Scholar 

  65. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gomez-Blanco, J., Kaur, S., Ortega, J. & Vargas, J. A robust approach to ab initio cryo-electron microscopy initial volume determination. J. Struct. Biol. 208, 107397 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).

  78. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boehringer, D., O’Farrell, H. C., Rife, J. P. & Ban, N. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis. J. Biol. Chem. 287, 10453–10459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D. Biol. Crystallogr 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Noeske, J. et al. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 22, 336–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  84. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pintilie, G. et al. Measurement of atom resolvability in cryo-EM maps with Q-scores. Nat. Methods 17, 328–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Sears, M. Strauss, K. Basu and other staff members at the Facility for Electron Microscopy Research (FEMR) at McGill University for help with microscope operation and data collection; the MIT-Satori administrative team for providing computational resources and support; and B. Powell and E. Zhong, and other members of the Davis and Ortega labs, for constructive feedback on this work. This work was funded by the Hugh Hampton Young Fellowship to L.F.K.; National Science Foundation CAREER grant 2046778 and National Institutes of Health grant R01-GM144542 to J.H.D.; and the Canadian Institutes of Health Research grant CIHR PJT-180305 to J.O. FEMR is supported by the Canadian Foundation for Innovation, Quebec Government and McGill University. Research in the Davis lab is supported by the Alfred P. Sloan Foundation, the James H. Ferry Fund, the MIT J-Clinic, and the Whitehead Family.

Author information

Authors and Affiliations

Authors

Contributions

Investigation: J.S., L.F.K., D.J.; Software: L.F.K.; Writing – Original draft: J.S., L.F.K., J.O., J.H.D.; Writing – Review & editing: J.S., L.F.K., J.O., J.H.D.; Visualization: J.S., L.F.K., J.H.D.; Supervision, Project administration, and Funding acquisition: J.O., J.H.D. Peer reviewer reports are available.

Corresponding authors

Correspondence to Laurel F. Kinman, Joaquin Ortega or Joseph H. Davis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Sara Osman and Dimitris Typas were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–17, Supplementary Video Legends 1 and 2, and Uncropped Gel

Reporting Summary

Peer Review File

Supplementary Video 1

Supplementary Video 1: Rotation of the head density in KsgA-treated volumes. For each of the KsgA-treated and untreated datasets, 500 volumes were resampled from the subset of latent space corresponding to particles exhibiting strong head density (see Methods). The full set of 1,000 volumes were aligned and amplitude-scaled, and a mask corresponding to the native H32 and H33 density in PDB model 4V9D was applied to the volumes. Principal component analysis was performed on the resulting voxel array (see Methods and Supplementary Figure 12). Volumes shown here are sampled from low to high values of the first principal component. Only the head portion of each volume is shown (orange); the mature 30S is overlaid for reference (gray).

Supplementary Video 2

Supplementary Video 2: H44 flexibility in the absence of KsgA. For each of the treated and untreated datasets, 500 volumes were resampled from the subset of latent space corresponding to particles exhibiting strong H44 density (see Methods). The full set of 1,000 volumes were aligned and amplitude-scaled, and a mask corresponding to the native H44 density in PDB model 4V9D was applied to the volumes. Principal component analysis (vPCA) was performed on the resulting voxel array (see Methods and Supplementary Figure 12). Volumes shown here were sampled from low to high value of the first principal component. Only the H44-masked portion of each volume is shown (orange); a volume lacking H44 is overlaid for reference (grey).

Source data

Source Data Fig. 2

Normalized MAVEn occupancies table for the KsgA-treated sample.

Source Data Fig. 5

Normalized MAVEn occupancies table for the untreated sample.

Source Data Extended Data Fig. 1

R-protein occupancy as measured by mass spectrometry. Data are plotted in Supplementary Figure 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Kinman, L.F., Jahagirdar, D. et al. KsgA facilitates ribosomal small subunit maturation by proofreading a key structural lesion. Nat Struct Mol Biol 30, 1468–1480 (2023). https://doi.org/10.1038/s41594-023-01078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01078-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing