Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A four-point molecular handover during Okazaki maturation

Abstract

DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA–DNA junction, thus marking the end of the RNA primer and creating a 5′ end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of Pol IIIαε and Pol I primer extension activity.
Fig. 2: Cryo-EM structures of Pol I bound to an upstream and downstream DNA substrate.
Fig. 3: Alternating activities of polymerase fingers and endonuclease domains.
Fig. 4: Pol I endonuclease cuts at the RNA–DNA junction.
Fig. 5: Ligase activity of the E. coli LigA and LigB.
Fig. 6: The β clamp does not appear to play a role in Okazaki fragment maturation.
Fig. 7: Schematic representation of Okazaki fragment maturation.

Similar content being viewed by others

Data availability

Cryo-EM maps and atomic models have been deposited in the Electron Microscopy Database and Protein Data Bank, respectively, under accession codes EMD-17033, PDB 8OOY, EMD-17005 and PDB 8OO6. Source data are provided with this paper. Other requests should be addressed to M.H.L. (m.h.lamers@lumc.nl).

References

  1. Mok, M. & Marians, K. J. The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. J. Biol. Chem. 262, 16644–16654 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. McInerney, P., Johnson, A., Katz, F. & O’Donnell, M. Characterization of a triple DNA polymerase replisome. Mol. Cell 27, 527–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Yao, N. Y., Georgescu, R. E., Finkelstein, J. & O’Donnell, M. E. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc. Natl Acad. Sci. USA 106, 13236–13241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sakabe, K. & Okazaki, R. A unique property of the replicating region of chromosomal DNA. Biochim. Biophys. Acta. 129, 651–654 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Okazaki, R. Mechanism of DNA chain growth. J. Mol. Biol. 95, 63–70 (1967).

    Google Scholar 

  6. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kitani, T., Yoda, K. Y., Ogawa, T. & Okazaki, T. Evidence that discontinuous DNA replication in Escherichia coli is primed by approximately 10 to 12 residues of RNA starting with a purine. J. Mol. Biol. 184, 45–52 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, C. A., Zechner, E. L., Reems, J. A., McHenry, C. S. & Marians, K. J. Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. J. Biol. Chem. 267, 4074–4083 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Balakrishnan, L. & Bambara, R. A. Okazaki fragment metabolism. Cold Spring Harb. Perspect. Biol. 5, a010173 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. LaDuca, R. J., Crute, J. J., McHenry, C. S. & Bambara, R. A. The β subunit of the Escherichia coli DNA polymerase III holoenzyme interacts functionally with the catalytic core in the absence of other subunits. J. Biol. Chem. 261, 7550–7557 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Stukenberg, P. T., Studwell-Vaughan, P. S. & O’Donnell, M. Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J. Biol. Chem. 266, 11328–11334 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Georgescu, R. E. et al. Mechanism of polymerase collision release from sliding clamps on the lagging strand. EMBO J. 28, 2981–2991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lundquist, R. C. & Olivera, B. M. Transient generation of displaced single-stranded DNA during nick translation. Cell 31, 53–60 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Singh, K., Srivastava, A., Patel, S. S. & Modak, M. J. Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. J. Biol. Chem. 282, 10594–10604 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Klett, R. P., Cerami, A. & Reich, E. Exonuclease VI, a new nuclease activity associated with E. coli DNA polymerase. Proc. Natl Acad. Sci. USA 60, 943–950 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelly, R. B. Enzymatic synthesis of deoxyribonucleic acid. J. Biol. Chem. 53, 83–112 (1970).

    Google Scholar 

  17. Lyamichev, V., Brow, M. A. D. & Dahlberg, J. E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778–783 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, Y. et al. Biochemical and mutational studies of the 5′-3′ exonuclease of DNA polymerase I of Escherichia coli. J. Mol. Biol. 268, 284–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Sugimoto, K., Okazaki, T. & Okazaki, R. Mechanism of DNA chain growth, II. Accumulation of newly synthesized short chains in E. coli infected with ligase-defective T4 phages. Proc. Natl Acad. Sci. USA 60, 1356–1362 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pauling, C. & Hamm, L. Properties of a temperature-sensitive, radiation-sensitive mutant of Escherichia coli. II. DNA replication. Proc. Natl Acad. Sci. USA 64, 1195–1202 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao, Y. & Yang, W. Different mechanisms for translocation by monomeric and hexameric helicases. Curr. Opin. Struct. Biol. 61, 25–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Meir, A. & Greene, E. C. Srs2 and pif1 as model systems for understanding sf1a and sf1b helicase structure and function. Genes (Basel) 12, 1319 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Yuan, Q. & McHenry, C. S. Strand displacement by DNA polymerase III occurs through a τ-ψ-χ link to single-stranded DNA-binding protein coating the lagging strand template. J. Biol. Chem. 284, 31672–31679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartz, J. J. & Quake, S. R. Single molecule measurement of the ‘speed limit’ of DNA polymerase. Proc. Natl Acad. Sci. USA 106, 20294–20299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Donnell, M. E. & Kornberg, A. Complete replication of templates by Escherichia coli DNA polymerase III holoenzyme. J. Biol. Chem. 260, 12884–12889 (1985).

    Article  PubMed  Google Scholar 

  26. Leu, F. P., Georgescu, R. & O’Donnell, M. Mechanism of the E. coli τ processivity switch during lagging-strand synthesis. Mol. Cell 11, 315–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Pascal, J. M. DNA and RNA ligases: structural variations and shared mechanisms. Curr. Opin. Struct. Biol. 18, 96–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Johnson, K. A. The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim. Biophys. Acta - Proteins Proteom. 1804, 1041–1048 (2010).

    Article  CAS  Google Scholar 

  29. Santoso, Y. et al. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. Proc. Natl Acad. Sci. USA 107, 715–720 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Miller, B. R., Beese, L. S., Parish, C. A. & Wu, E. Y. The closing mechanism of DNA polymerase I at atomic resolution. Structure 23, 1609–1620 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beese, L. S., Derbyshire, V. & Steitz, T. A. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science https://doi.org/10.1142/9789811215865_0028 (1993).

  32. Eom, S. H., Wang, J. & Steitz, T. A. Structure of Taq polymerase with DNA at the polymerase active site. Nature 382, 293–296 (1996).

    Article  Google Scholar 

  33. Kiefer, J. R., Mao, C. & Beese, L. S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391, 304–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Ghosh, S., Goldgur, Y. & Shuman, S. Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO–POL enzyme. Nucleic Acids Res. 48, 3165–3180 (2020).

  35. Craggs, T. D. et al. Substrate conformational dynamics facilitate structure-specific recognition of gapped DNA by DNA polymerase. Nucleic Acids Res. 47, 10788–10800 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, Y. et al. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376, 288–292 (1995).

    Article  Google Scholar 

  37. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. AlMalki, F. A. et al. Direct observation of DNA threading in flap endonuclease complexes. Nat. Struct. Mol. Biol. 23, 640–646 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsutakawa, S. E. et al. Phosphate steering by Flap Endonuclease 1 promotes 5′-flap specificity and incision to prevent genome instability. Nat. Commun. 8, 15855 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, Y., Grindley, N. D. F. & Joyce, C. M. Coordination between the polymerase and 5′-nuclease components of DNA polymerase I of Escherichia coli. J. Biol. Chem. 275, 20949–20955 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Pauszek, R. F. III, Lamichhane, R., Singh, A. R. & Millar, D. P. Single-molecule view of coordination in a multi-functional DNA polymerase. eLife 10, e62046 (2021).

  42. Ohtani, N., Tomita, M. & Itaya, M. Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex. Biochem. J. 412, 517–526 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Rychlik, M. P. et al. Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage. Mol. Cell 40, 658–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sriskanda, V. A second NAD+-dependent DNA ligase (LigB) in Escherichia coli. Nucleic Acids Res. 29, 4930–4934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olivera, B. M. Enzymic joining of polynucleotides. J. Mol. Biol. 46, 481–492 (1968).

    Google Scholar 

  46. Stukenberg, P. T., Turner, J. & O’Donnell, M. An explanation for lagging strand replication: polymerase hopping among DNA sliding clamps. Cell 78, 877–887 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. López De Saro, F. J., Georgescu, R. E., Goodman, M. F. & O’Donnell, M. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J. 22, 6408–6418 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  48. López de Saro, F. J. & O’Donnell, M. Interaction of the β sliding clamp with MutS, ligase, and DNA polymerase I. Proc. Natl Acad. Sci. USA 98, 8376–8380 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bhardwaj, A., Ghose, D., Gopal Thakur, K. & Dutta, D. Escherichia coli β-clamp slows down DNA polymerase I dependent nick translation while accelerating ligation. PLoS ONE 13, e0199559 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kukshal, V. et al. M. tuberculosis sliding β-clamp does not interact directly with the NAD+-dependent DNA ligase. PLoS ONE 7, e35702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levin, D. S., Bai, W., Yao, N., O’Donnell, M. & Tomkinson, A. E. An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc. Natl Acad. Sci. USA 94, 12863–12868 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, P. et al. Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase δ. J. Biol. Chem. 274, 26647–26653 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Gomes, X. V. & Burgers, P. M. J. Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J. 19, 3811–3821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie, B. et al. Reconstitution and characterization of the human DNA polymerase delta four-subunit holoenzyme. Biochemistry 41, 13133–13142 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Georgescu, R. E. et al. Structure of a sliding clamp on DNA. Cell 132, 43–54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernandez-Leiro, R., Conrad, J., Scheres, S. H. W. & Lamers, M. H. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. eLife https://doi.org/10.7554/eLife.11134 (2015).

  57. Fernandez-Leiro, R. et al. Self-correcting mismatches during high-fidelity DNA replication. Nat. Struct. Mol. Biol. 24, 140–143 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toste Rêgo, A., Holding, A. N., Kent, H. & Lamers, M. H. Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. EMBO J. 32, 1334–1343 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garg, P., Stith, C. M., Sabouri, N., Johansson, E. & Burgers, P. M. Idling by DNA polymerase δ maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18, 2764–2773 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rossi, M. L., Purohit, V., Brandt, P. D. & Bambara, R. A. Lagging strand replication proteins in genome stability and DNA repair. Chem. Rev. 106, 453–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Stodola, J. L. & Burgers, P. M. Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat. Struct. Mol. Biol. 23, 402–408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ganai, R. A. & Johansson, E. DNA replication—a matter of fidelity. Mol. Cell 62, 745–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Jin, Y. H. et al. The 3′→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl Acad. Sci. USA 98, 5122–5127 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grasby, J. A., Finger, L. D., Tsutakawa, S. E., Atack, J. M. & Tainer, J. A. Unpairing and gating: sequence-independent substrate recognition by FEN superfamily nucleases. Trends Biochem. Sci. 37, 74–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Stith, C. M., Sterling, J., Resnick, M. A., Gordenin, D. A. & Burgers, P. M. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283, 34129–34140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matsumoto, Y., Brooks, R. C., Sverzhinsky, A., Pascal, J. M. & Tomkinson, A. E. Dynamic DNA-bound PCNA complexes co-ordinate Okazaki fragment synthesis, processing and ligation. J. Mol. Biol. 432, 166698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, E63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thompson, D. & Lei, Y. Mini review: recent progress in RT-LAMP enabled COVID-19 detection. Sens. Actuators Rep. 2, 100017 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kashir, J. & Yaqinuddin, A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med. Hypotheses 141, 109786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mautner, L. et al. Rapid point-of-care detection of SARS-CoV-2 using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virol. J. 17, 160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mackay, I. M., Arden, K. E. & Nitsche, A. Real-time PCR in virology. Nucleic Acids Res. 30, 1292–1305 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rabe, B. A. & Cepko, C. SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proc. Natl Acad. Sci. USA 117, 24450–24458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luna-Vargas, M. P. A. et al. Enabling high-throughput ligation-independent cloning and protein expression for the family of ubiquitin specific proteases. J. Struct. Biol. 175, 113–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Venkata Subramaniya, S. R. M., Terashi, G. & Kihara, D. Super resolution cryo-EM maps with 3D deep generative networks. Biophys. J. 120, 283a (2021).

    Article  Google Scholar 

  77. Zi Tan, Y. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  Google Scholar 

  78. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nicholls, R. A., Tykac, M., Kovalevskiy, O. & Murshudov, G. N. Current approaches for the fitting and refinement of atomic models into cryo-em maps using CCP-EM. Acta Crystallogr. D 74, 492–505 (2018).

    Article  CAS  Google Scholar 

  81. Nicholls, R. A., Fischer, M., McNicholas, S. & Murshudov, G. N. Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr. D 70, 2487–2499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dalrymple, B. P., Kongsuwan, K., Wijffels, G., Dixon, N. E. & Jennings, P. A. A universal protein-protein interaction motif in the eubacterial DNA replication and repair systems. Proc. Natl Acad. Sci. USA 98, 11627–11632 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Castro, E. et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chaiet, L. & Wolf, F. J. The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Arch. Biochem. Biophys. 106, 1–5 (1964).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the LUMC EM facility and the Netherlands Center for Electron Nanoscopy (NeCEN) for help with data collection and data processing. This work has been supported by an LUMC Research Fellowship to M.H.L. Access to NeCEN was supported by the Netherlands Electron Microscopy Infrastructure, project no. 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.H.L. and M.M.B. conceived the overall experimental design. M.M.B. prepared samples, performed biochemical assays and analyzed data. A.B. collected and processed cryo-EM data. M.M.B. and M.H.L. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Meindert H. Lamers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Nicholas Dixon, Mike O’Donnell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Sara Osman and Dimitris Typas were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM data collection and data processing details.

a, Representative micrograph from the 11,000 micrographs collected. b, 2D class averages from full dataset. c, Fourier Shell Correlation between half-maps from final refinement. Green line: unmasked. Blue line: masked. Red line: phase randomized. Black line: corrected. Bottom (4th) panel shows the Fourier Shell Correlation of the model-to-map of the three structures (green line: full-length structure, blue line: closed structure, red line: open structure), d, Schematic representation of main data processing procedures. See Methods section for more details. e, Final map obtained after applying SuperEM code to Relion postprocessed map from dataset 1 and colored by local resolution. Color bar below the map shows the resolution range of the cryo-EM map in Å. f, Detail of model fitted to the final cryo-EM map from dataset 1. g, Orientational distribution of final set of refined particles from dataset 1. h, Anisotropy analysis of open and closed structure. Red line shows the half map FSC, with green lines representing the spread of the directional resolution defined by plus and minus one standard deviation from the mean. Blue bars show the histogram of one hundred directional resolutions evenly sampled of the 3D FSC. i, overlay of cryo-EM pol I structure with five X-ray crystallography structures of Pol I (pdb codes: 1l3t, 2bdp, 3tar, 6dsy, 7k50). Cryo-EM structure of open Pol I in cyan, with template DNA in black, extended primer in green, and displaced primer in red. All previously determined structures are shown in gray.

Extended Data Fig. 2 Positional modelling of the endonuclease domain in Pol I.

a, E. coli Pol I with predicted position of the endonuclease domain on top of the fingers domain, based on the position of the single-stranded flap (see also main Fig. 3a). b, Thermus aquaticus Pol I with its endonuclease domain adjacent to the 3′-5′ exonuclease domain33. c, Mycobacterium smegmatis Pol I with its endonuclease domain adjacent to the thumb domain31. d, Superposition of three Pol I endonuclease domains from T. aquaticus, M. smegmatis, and E. coli, (modelled using AlphaFold34). Red star marks the endonuclease active site. e, Superposition of E. coli Pol I endonuclease domain and T5 endonuclease bound to its substrate DNA35. The square marks the enlarged area shown below. Site of incision is marked by the two nucleotides in light blue. Two catalytic aspartates are shown in sticks. f, Similar comparison with human FEN136. Structures of T5 endonuclease and FEN1 were used to model the position of Pol I endonuclease in main Fig. 3b.

Extended Data Fig. 3 Pol I does not progress past a C in the template strand in absence of dGTP.

a, Pol I activity in absence of LigA using the templates shown in panel b, using only the three nucleotides dATP, dCTP, and dTTP. Experimental conditions are the same as in Fig. 5b. b, Substrates used for experiment in panel a.

Extended Data Fig. 4 The location of β-binding motifs of Pol I, LigA and Pol IIIα.

a, Model of Pol I and β-clamp. The β-clamp is shown in green surface, with binding pocket highlighted in yellow. The predicted β-binding motif of Pol I is shown in magenta sticks and is located in a helix of the thumb domain that interacts with the minor groove of the DNA. b, Model of LigA and β-clamp shown in two views rotated by 180°. The two predicted β-binding motifs are shown in magenta sticks. Motif LigA-1 is located in a helix that precedes a loop that interacts with the DNA. Motif LigA-2 is located on a strand that is part of the OB-domain that also interacts with the DNA. c, Cryo-EM structure of Pol IIIα bound to the β-clamp, exonuclease ε, and DNA52. The Pol IIIα β-binding motif is shown in magenta sticks and located on a loop at the end of the fingers domain and interacts with the binding pocket of the β-clamp. d, Alignment of β-binding motifs from Pol I, LigA and Pol IIIα that are highlighted in magenta in panels a-c.

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Reporting Summary

Peer Review File

Supplementary Video 1

Video showing a morph from closed to open cryo-EM map of Pol I.

Supplementary Video 2

Model of the single base pair translocation of the DNA in Pol I and the resulting displacement of a single nucleotide in the displaced strand.

Source data

Source Data Fig. 1

Unprocessed gels.

Source Data Fig. 3

Unprocessed gels.

Source Data Fig. 4

Unprocessed gels.

Source Data Fig. 5

Unprocessed gels.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Unprocessed gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botto, M.M., Borsellini, A. & Lamers, M.H. A four-point molecular handover during Okazaki maturation. Nat Struct Mol Biol 30, 1505–1515 (2023). https://doi.org/10.1038/s41594-023-01071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01071-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing