Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis for nuclear accumulation and targeting of the inhibitor of apoptosis BIRC2

Abstract

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3–H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BIRC2 recognizes histone tails.
Fig. 2: BIRs mediate histone and DNA binding functions of BIRC2.
Fig. 3: BIRC2 mediates cell defense and cell-cycle signaling.
Fig. 4: LCL161 binds to BIRC2BIR2 and BIRC2BIR3.
Fig. 5: LCL161 disrupts binding of BIRC2 to H3 and induces cell death.
Fig. 6: LCL161 mediates BIRCs degradation in HIV-1-infected CD4+ T cells.

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 7TRL and 7TRM. RNA-seq data are deposited in the NCBI Gene Expression Omnibus (GEO) database with the accession number GSE23028. Source data and Supplementary Data files are provided with this paper. All other relevant data supporting the key findings of this study are available within the article, its Supplementary Information or from the corresponding authors upon reasonable request.

Code availability

This paper does not report original code.

References

  1. Gyrd-Hansen, M. & Meier, P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer 10, 561–574 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Estornes, Y. & Bertrand, M. J. IAPs, regulators of innate immunity and inflammation. Semin. Cell Dev. Biol. 39, 106–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Mehrotra, S. et al. IAP regulation of metastasis. Cancer Cell 17, 53–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swingler, S., Mann, A. M., Zhou, J., Swingler, C. & Stevenson, M. Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein. PLoS Pathog. 3, 1281–1290 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X., Ragupathy, V., Zhao, J. & Hewlett, I. Molecules from apoptotic pathways modulate HIV-1 replication in Jurkat cells. Biochem. Biophys. Res. Commun. 414, 20–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Pache, L. et al. BIRC2/cIAP1 is a negative regulator of HIV-1 transcription and can be targeted by Smac mimetics to promote reversal of viral latency. Cell Host Microbe 18, 345–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zarnegar, B. J. et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371–1378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dueber, E. C. et al. Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334, 376–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, X. et al. XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene 38, 1448–1460 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uren, A. G. et al. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad. Sci. USA 96, 10170–10175 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glorian, V. et al. DNA damage and S phase-dependent E2F1 stabilization requires the cIAP1 E3-ubiquitin ligase and is associated with K63-poly-ubiquitination on lysine 161/164 residues. Cell Death Dis. 8, e2816 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sauer, M. et al. Induction of the DNA damage response by IAP inhibition triggers natural immunity via upregulation of NKG2D ligands in Hodgkin lymphoma in vitro. Biol. Chem. 394, 1325–1331 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Dogan, T. et al. X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility. Nat. Cell Biol. 10, 1447–1455 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Cartier, J. et al. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J. Biol. Chem. 286, 26406–26417 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samuel, T. et al. cIAP1 localizes to the nuclear compartment and modulates the cell cycle. Cancer Res. 65, 210–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Plenchette, S. et al. Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood 104, 2035–2043 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov. 11, 109–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, S. M. et al. Targeting inhibitors of apoptosis proteins suppresses medulloblastoma cell proliferation via G2/M phase arrest and attenuated neddylation of p21. Cancer Med 7, 3988–4003 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang, Y. C. & Cheung, C. H. An updated review of Smac mimetics, LCL161, birinapant, and CDC-0152 in cancer treatment. Appl. Sci. 11, 335 (2021).

    Article  CAS  Google Scholar 

  26. Fulda, S. Smac mimetics to therapeutically target IAP proteins in cancer. Int Rev. Cell Mol. Biol. 330, 157–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Bai, L., Smith, D. C. & Wang, S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol. Ther. 144, 82–95 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell, G. R., To, R. K., Zhang, G. & Spector, S. A. SMAC mimetics induce autophagy-dependent apoptosis of HIV-1-infected macrophages. Cell Death Dis. 11, 590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welsh, K. et al. Characterization of potent SMAC mimetics that sensitize cancer cells to TNF family-induced apoptosis. PLoS ONE 11, e0161952 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasula, S. M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, L. et al. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466, 258–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18, 777–782 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Tencer, A. H. et al. Molecular mechanism of the MORC4 ATPase activation. Nat. Commun. 11, 5466 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Musselman, C. A. et al. Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem. J. 423, 179–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Vann, K. R., Klein, B. J. & Kutateladze, T. G. Mechanistic similarities in recognition of histone tails and DNA by epigenetic readers. Curr. Opin. Struct. Biol. 71, 1–6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pemmaraju, N. et al. Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Adv. 5, 3163–3173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Silvestris, F. et al. Overexpression of Fas antigen on T cells in advanced HIV-1 infection: differential ligation constantly induces apoptosis. AIDS 10, 131–141 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Campbell, G. R., Bruckman, R. S., Chu, Y. L., Trout, R. N. & Spector, S. A. SMAC mimetics induce autophagy-dependent apoptosis of HIV-1-infected resting memory CD4+ T cells. Cell Host Microbe 24, 689–702.e687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McEleny, K. et al. An antisense oligonucleotide to cIAP-1 sensitizes prostate cancer cells to fas and TNFalpha mediated apoptosis. Prostate 59, 419–425 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Dynek, J. N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198–4209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laurien, L. et al. Autophosphorylation at serine 166 regulates RIP kinase 1-mediated cell death and inflammation. Nat. Commun. 11, 1747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feltham, R. & Silke, J. The small molecule that packs a punch: ubiquitin-mediated regulation of RIPK1/FADD/caspase-8 complexes. Cell Death Differ. 24, 1196–1204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwarzer, R., Laurien, L. & Pasparakis, M. New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr. Opin. Cell Biol. 63, 186–193 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Campbell, G. R. et al. CD4+ T cell-mimicking nanoparticles encapsulating DIABLO/SMAC mimetics broadly neutralize HIV-1 and selectively kills HIV-1-infected cells. Theranostics 11, 9009–9021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dupoux, A. et al. cIAP1-dependent TRAF2 degradation regulates the differentiation of monocytes into macrophages and their response to CD40 ligand. Blood 113, 175–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

  48. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

  49. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  Google Scholar 

  52. Tada, H., Shiho, O., Kuroshima, K., Koyama, M. & Tsukamoto, K. An improved colorimetric assay for interleukin 2. J. Immunol. Methods 93, 157–165 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Velikkakath, A. K., Nishimura, T., Oita, E., Ishihara, N. & Mizushima, N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23, 896–909 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH nos. GM125195, GM135671, HL151334, CA252707 and AG067664 to T.G.K., nos. CA204020 and CA268440 to X.S., nos. MH128021 to G.R.C., nos. NS104015 to S.A.S. and no. CA255506 to H.W., by the Ligue Contre le Cancer to L.D., the European Union and the ‘Conseil Régional de Bourgogne,’ a French Government grant managed by the French National Research Agency under the program ‘Investissements d’Avenir’ (ANR-11-LABX-0021) to L.D. and the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (impaactnetwork.org) to S.A.S. Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) Network is provided by the National Institute of Allergy and Infectious Diseases of the NIH under award numbers UM1AI068632 (IMPAACT LOC), UM1AI068616 (IMPAACT SDMC) and UM1AI106716 (IMPAACT LC), with cofunding from the Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Institute of Mental Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

A.H.T., Y.Y., S.Z.C., G.R.C., B.J.K., H.X., J.C., M.A.M., N.G., A.Z. and T.A.H. performed experiments and, together with H.W., C.J.H., S.A.S., L.D., X.S. and T.G.K., analyzed the data. T.G.K. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Stephen A. Spector, Laurence Dubrez, Xiaobing Shi or Tatiana G. Kutateladze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Francisco Blanco, Ji-Joon Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Carolina Perdigoto, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Reporting Summary

Peer Review File

Supplementary Data

Source data for supplementary information.

Supplementary Table 1

CPM values for all expressed genes and GO biological process terms of DEGs in BIRC2 KO cells. Adjusted P values for DEGs were calculated by two-sided Exact test model.

Source data

Source Data Figs. 1 and 3–6

Fluorescence, G2/M, RT–qPCR, MTT, LDH and ELISA data.

Source Data Figs. 1–3, 5 and 6

Uncropped blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tencer, A.H., Yu, Y., Causse, S.Z. et al. Molecular basis for nuclear accumulation and targeting of the inhibitor of apoptosis BIRC2. Nat Struct Mol Biol 30, 1265–1274 (2023). https://doi.org/10.1038/s41594-023-01044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01044-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing