Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide screen reveals new regulators of the 2-cell-like cell state

Abstract

In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse ‘2-cell-like cells’ (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dazl as a reporter gene for the 2-cell stage, screen design and generation of the Dazl-mScarlet-HygroR (DASH) reporter cell line.
Fig. 2: A genome-wide CRISPR KO screen for Dazl gene reactivation in the DASH reporter line.
Fig. 3: Four loss-of-function mutants that induce Dazl expression: Mcm3ap KO, Spop KO, Zbtb14 KO and Kdm5c KO.
Fig. 4: Induction of a 2-cell-like signature in the Mcm3ap, Spop, Zbtb14 and Kdm5c KOs.
Fig. 5: Epistasis analyses show that KDM5C removal activates Dazl independently of Dux and Dppa2.
Fig. 6: Mechanistic studies on SPOP and ZBTB14.
Fig. 7: Catalysis-independent role of KDM5C.

Data availability

All sequencing data generated in this study are available in the Gene Expression Omnibus under accession number GSE221710. For Figs. 1 and 4 and Extended Data Fig. 5, published RNA-seq were reanalyzed from GSE33923 (Macfarlan)7; E-MTAB-2684 (Ishiuchi)19; GSE75751 (Eckersley-Maslin)23; GSE71434 (Zhang)66 and GSE66390 (Wu)65. Other online databases used in the study were STRING (https://string-db.org/) in Fig. 2 and GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) in Fig. 4 and Extended Data Fig. 4. Source data are provided with this paper.

Code availability

Custom scripts used for WGBS mapping are available at: https://github.com/FumihitoMiura/Project-2.

References

  1. Ladstätter, S. & Tachibana, K. Genomic insights into chromatin reprogramming to totipotency in embryos. J. Cell Biol. 218, 70–82 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Riveiro, A. R. & Brickman, J. M. From pluripotency to totipotency: an experimentalist’s guide to cellular potency. Development 147, dev189845 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941–945 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 49, 925–934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Whiddon, J. L., Langford, A. T., Wong, C.-J., Zhong, J. W. & Tapscott, S. J. Conservation and innovation in the DUX4-family gene network. Nat. Genet. 49, 935–940 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Genet, M. & Torres-Padilla, M.-E. The molecular and cellular features of 2-cell-like cells: a reference guide. Development 147, dev189688 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Iturbide, A. & Torres-Padilla, M.-E. A cell in hand is worth two in the embryo: recent advances in 2-cell like cell reprogramming. Curr. Opin. Genet. Dev. 64, 26–30 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Eckersley-Maslin, M. et al. Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. Genes Dev. 33, 194–208 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Iaco, A., Coudray, A., Duc, J. & Trono, D. DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep. 20, e47382 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Grow, E. J. et al. p53 convergently activates Dux/DUX4 in embryonic stem cells and in facioscapulohumeral muscular dystrophy cell models. Nat. Genet. 53, 1207–1220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, M. et al. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell https://doi.org/10.1016/j.stem.2022.01.010 (2022).

  14. Morgan, M., Kumar, L., Li, Y. & Baptissart, M. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell. Mol. Life Sci. 78, 8049–8071 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez-Terrones, D. et al. A molecular roadmap for the emergence of early-embryonic-like cells in culture. Nat. Genet. 50, 106–119 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Endoh, M. et al. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. eLife 6, e21064 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dahlet, T. et al. E2F6 initiates stable epigenetic silencing of germline genes during embryonic development. Nat. Commun. 12, 3582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mochizuki, K. et al. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat. Commun. 12, 7020 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Fu, X., Wu, X., Djekidel, M. N. & Zhang, Y. Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic stem cells. Nat. Cell Biol. 21, 835–844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alda-Catalinas, C. et al. A single-cell transcriptomics CRISPR-activation screen identifies epigenetic regulators of the zygotic genome activation program. Cell Syst. 11, 25–41.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gretarsson, K. H. & Hackett, J. A. Dppa2 and Dppa4 counteract de novo methylation to establish a permissive epigenome for development. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-020-0445-1 (2020).

    Article  PubMed  Google Scholar 

  23. Eckersley-Maslin, M. A. et al. MERVL/Zscan4 network activation results in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 179–192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Habibi, E. et al. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Velasco, G. et al. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc. Natl Acad. Sci. USA 107, 9281–9286 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Laisné, M., Gupta, N., Kirsh, O., Pradhan, S. & Defossez, P.-A. Mechanisms of DNA methyltransferase recruitment in mammals. Genes 9, 617 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Terrones, D. et al. A distinct metabolic state arises during the emergence of 2-cell-like cells. EMBO Rep. 21, e48354 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR–Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Petryk, N., Bultmann, S., Bartke, T. & Defossez, P.-A. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1154 (2020).

  32. Clark, A. & Burleson, M. SPOP and cancer: a systematic review. Am J Cancer Res 10, 704–726 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, M. et al. Genome-wide CRISPR-KO screen uncovers mTORC1-Mediated Gsk3 regulation in naive pluripotency maintenance and dissolution. Cell Rep. 24, 489–502 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh, S. K. et al. GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy. Nat. Commun. 4, 1830 (2013).

    Article  PubMed  Google Scholar 

  35. Aksenova, V. et al. Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat. Commun. 11, 4577 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Umlauf, D. et al. The human TREX-2 complex is stably associated with the nuclear pore basket. J. Cell Sci. 126, 2656–2667 (2013).

    CAS  PubMed  Google Scholar 

  37. Schneider, M. et al. The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression. Cell 162, 1016–1028 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukuda, K., Okuda, A., Yusa, K. & Shinkai, Y. A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. Genome Res. 28, 846–858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, W. et al. Zscan4c activates endogenous retrovirus MERVL and cleavage embryo genes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz594 (2019).

  40. Rual, J.-F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grand, R. S. et al. BANP opens chromatin and activates CpG-island-regulated genes. Nature 596, 133–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Tsaban, T. et al. CladeOScope: functional interactions through the prism of clade-wise co-evolution. NAR Genom. Bioinform. 3, lqab024 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Outchkourov, N. S. et al. Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function. Cell Reports 3, 1071–1079 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Iwase, S. et al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Yan, Y.-L. et al. DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol. 17, e3000324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakatake, Y. et al. Kinetics of drug selection systems in mouse embryonic stem cells. BMC Biotechnol. 13, 64 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Percharde, M. et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jachowicz, J. W. et al. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447, 601–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Christensen, J. et al. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128, 1063–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Scandaglia, M. et al. Loss of Kdm5c causes spurious transcription and prevents the fine-tuning of activity-regulated enhancers in neurons. Cell Rep. 21, 47–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shpargel, K. B., Sengoku, T., Yokoyama, S. & Magnuson, T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 8, e1002964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boukhaled, G. M. et al. The transcriptional repressor polycomb group factor 6, PCGF6, negatively regulates dendritic cell activation and promotes quiescence. Cell Rep. 16, 1829–1837 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Evangelista, F. M. et al. Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair. J. Cell Biol. 217, 3382–3397 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Atashpaz, S. et al. ATR expands embryonic stem cell fate potential in response to replication stress. eLife 9, e54756 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, W. et al. ZFP161 regulates replication fork stability and maintenance of genomic stability by recruiting the ATR/ATRIP complex. Nat. Commun. 10, 5304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nakatani, T. et al. DNA replication fork speed underlies cell fate changes and promotes reprogramming. Nat. Genet. 54, 318–327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van den Boogaard, M. L. et al. Mutations in DNMT3B modify epigenetic repression of the D4Z4 repeat and the penetrance of facioscapulohumeral dystrophy. A. J. Hum. Genet. 98, 1020–1029 (2016).

    Article  Google Scholar 

  61. Campbell, A. E. et al. NuRD and CAF-1-mediated silencing of the D4Z4 array is modulated by DUX4-induced MBD3L proteins. eLife 7, e31023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bonefas, K. M. & Iwase, S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J. https://doi.org/10.1111/febs.16196 (2021).

  63. Ylikallio, E. et al. MCM3AP in recessive Charcot-Marie-Tooth neuropathy and mild intellectual disability. Brain 140, 2093–2103 (2017).

    Article  PubMed  Google Scholar 

  64. Taubenschmid-Stowers, J. et al. 8C-like cells capture the human zygotic genome activation program in vitro. Cell Stem Cell 29, 449–459.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Krepelova, A., Neri, F., Maldotti, M., Rapelli, S. & Oliviero, S. Myc and max genome-wide binding sites analysis links the Myc regulatory network with the polycomb and the core pluripotency networks in mouse embryonic stem cells. PLoS ONE 9, e88933 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Scelfo, A. et al. Functional landscape of PCGF proteins reveals both RING1A/B-dependent-and RING1A/B-independent specific activities. Mol. Cell 74, 1037–1052.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Miura, F., Enomoto, Y., Dairiki, R. & Ito, T. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 40, e136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miura, F. et al. Highly efficient single-stranded DNA ligation technique improves low-input whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 47, e85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the following colleagues for useful advice: A. Bardin, B. Rodgers, C. Francastel, C. Rougeulle, S. Polo, P. Navarro, R. Margueron, G. Velasco, G. Filion, M. Casanova, S. Donakonda, M. Weber, L. Tora, Y. Shinkai, S. Khochbin and T. Bartke. We thank the following colleagues for useful reagents: D. Bourc’his (Institut Curie, Paris) for J1 mESCs, M.-E. Torres Padilla (Helmholtz Zentrum Munich) for tbg4 reporter mESCs, M. Timmers (DKFZ Heidelberg) for KDM5C tagged lines, N. Sakaguchi (Kumamoto University) for a mouse GANP cDNA, H. Niwa and Y. Shinkai (RIKEN Saitama) for piggyBac constructs, J. Sharif and H. Koseki (RIKEN Yokohama) for a FLAG-PCGF6 expression plasmid, J. Hackett (EMBL Rome) for a FLAG-DPPA2 expression plasmid. We thank the Vectorology platform, Epigenetics platform, Microscopy platform and Bioinformatics/Biostatistics Core Facility at the CNRS Epigenetics and Cell Fate Unit (Université Paris Cité), for providing access and technical advice. We thank E. Jeannot at Institut Curie for help with ddPCR. We thank S. Bultmann (LMU, Munich) for help with sgRNA sequencing and MAGeCK analysis. We acknowledge the ImagoSeine core facility of the Institut Jacques Monod, member of the France BioImaging (grant no. ANR-10-INBS-04) and the support of La Ligue contre le Cancer (grant no. R03/75-79). Microfluidic RT–qPCR (Fluidigm) analysis was carried out on the qPCR-HD-Genomic Paris Centre Core Facility and was supported by grants from Région Ile-de-France, grant no. DIMBIO-RVT-INSERM-ADR-P11 21016711. P.-A.D. is supported by Agence Nationale de la Recherche (PRCI INTEGER grant no. ANR-19-CE12-0030-01), LabEx ‘Who Am I?’ (grant no. ANR-11-LABX-0071), Université de Paris IdEx (grant no. ANR-18-IDEX-0001) funded by the French Government through its ‘Investments for the Future’ program, Fondation pour la Recherche Médicale, Fondation ARC (Programme Labellisé grant no. PGA1/RF20180206807). P.-A.D. and M.C.V.G. are supported by Agence Nationale de la Recherche (grant no. PRC REMEDY ANR-21-CE12-0015-03). P.-A.D., A.S. and G.C. were supported by grant RETROMET, no. ANR-16-CE12-0020, from Agence Nationale de la Recherche. J.R.A. and M.V.C.G. were supported by Laboratoire d’excellence Who Am I? (grant no. Labex 11-LABX-0071) Emerging Teams Grant and by the European Research Council (grant no. ERC-StG-2019 DyNAmecs). This research was supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED under grant no. JP20am0101103 (support no. 2652). K.Y. was the recipient of a postdoctoral fellowship from Fondation Association pour la Recherche sur le Cancer, and of a subsequent postdoc fellowship from Labex WhoAmI. M.L. thanks the Ligue contre le Cancer for a fourth year PhD fellowship.

Author information

Authors and Affiliations

Authors

Contributions

N.G. and P.-A.D. conceived the project. N.G., L.Y. and P.-A.D. planned the experiments. N.G., L.Y., L.F., F.B., S.B., K.Y. and A.A. performed experiments and analyzed the data. F.M. performed WGBS. C.D. performed MeDIP. F.B. performed mass spectrometry. M.D. and B.D. performed Fluidigm experiments. O.K. performed WGBS analysis. J.R.A., O.K., L.Y., M.L., A.S., K.Y. and G.C. performed other bioinformatic analyses. N.G., L.Y. and P.-A.D. wrote the manuscript. P.-A.D., T.I. and N.G. supervised the project. M.V.C.G., G.C., T.I. and P-.A.D. acquired funding. All authors reviewed the manuscript. J.R.A, A.A., L.F. and O.K. contributed equally.

Corresponding authors

Correspondence to Nikhil Gupta or Pierre-Antoine Defossez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Carolina Perdigoto and Dimitris Typas were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Generation and validation of the Dazl-mScarlet-Hygromycin (DASH) reporter cell line.

(a) WGBS and RNA-seq in our cellular background (DASH cells) confirm that Dazl promoter is highly methylated and repressed in serum, but hypo-methylated and expressed in 2i. CGI: CpG island. (b) RT-qPCR confirms the upregulation of Dazl in ESCs cultured in 2i (relative to serum condition). (c) Dazl exon 6 was targeted by 2 independent sgRNAs (red arrowhead) to insert the reporter cassette by homologous recombination. The donor construct contains Dazl homology arms flanking genes for the red fluorescent protein mScarlet, and the Hygromycin resistance enzyme (HygroR) separated by 2A self-cleaving peptides (P2A, T2A). (d) DASH ESCs have a single insertion at one of the Dazl alleles, as determined by ddPCR. Left panel: blue droplets are positive for the corresponding amplification; black droplets are negative. About 18,000 droplets were analyzed for each amplification. Right panel: quantitative analysis confirming single insertion of the donor construct. Gapdh served as a control present at 2 copies/cell. (e) RT-qPCR showing the up-regulation of Dazl and mScarlet in DASH ESCs cultured in 2i (relative to serum condition). (f) MeDIP assay showing the relative levels of 5mC at Gapdh and Dazl promoters in DASH ESCs grown in serum or 2i conditions. (g) Treatment of DASH cells with Sodium Acetate, a chemical inductor of 2CLCs, activates mScarlet expression. NT: not treated. SA: Sodium Acetate (40 mM, 48 h). **P < 0.01 (two-tailed t-test). (h) Detection of ZCAN4-positive cells in the SA-treated population (n = 633 cells) versus DASH (n = 812 cells). ****P < 0.0001 (two-tailed Mann-Whitney test). (i) Most ZSCAN4-positive cells are also mScarlet-positive. ****P < 0.0001 (two-tailed Mann-Whitney test). Data from n = 3 replicates are presented as mean values +/- SD for panels b, e and g. Data from n = 4 replicates are presented as mean values +/- SD for panels d and f. Data from n = 278 cells (Negative) and n = 228 cells (Positive) are presented for panel i.

Extended Data Fig. 2 Screen quality controls and validations of selected hits.

(a) FACS analysis (50,000 cells per condition) of mScarlet expression after Hygromycin selection. **P < 0.01 (two-tailed t-test). (b) RT-qPCR: comparison of mScarlet-expressing cells to Hygro49 cells. *P < 0.05, ***P < 0.005 (two-sided Holm-Sidak post-hoc test following ANOVA). (c) Decrease of global DNA methylation in mScarlet+ cells in comparison to Hygro49 cells from the screen, as measured by LUMA. *P < 0.05, **P < 0.01 (two-sided Holm-Sidak post-hoc test following ANOVA). (d) MeDIP assay showing the relative levels of 5mC at Gapdh and Dazl promoters in HygroR and mScarlet+ screen samples. (e) Gene ontology (GO) terms (Uniprot keywords) significantly enriched among the top 40 hits. (f) Expression of ‘naïve’ markers (left panel) and ‘FBS’ markers (right panel) in the KOs, FBS-grown and 2i-grown ESC. The KOs behave like FBS-grown ESC, not like 2i-grown cells. (g) Spontaneous differentiation induced by LIF removal is not impeded in the Mcm3ap, Spop, Zbtb14, and Kdm5c KOs. The Tcf7l1 KO is known to be unable to differentiate and is used as a control. Scale bar: 200 μm. (h) RT-qPCR on pluripotency and differentiation markers after LIF removal in the indicated KOs. Data from n = 2 independent screen replicates are presented as mean values +/− SD for panels a-d. Data from n = 3 independent KO clones are presented as mean values +/− SD for panels f and h.

Extended Data Fig. 3 Genetic analysis of the KO clones, rescue, and WGBS confirmation.

(a) Identification of the mutations found in each of the KO clones. (b) RT-qPCR analysis: genetic rescue of each KO suppresses Dazl mRNA induction. (c) WGBS coverage statistics (n = 3 independent KO clones). In the boxplots, the thick line indicates the median, the box limits indicate the upper and lower quartiles, and the whiskers extend to min and max values (d) Principal Component Analysis (PCA) on the WGBS results. The 4 KOs cluster together, away from serum cells and from 2i cells. (e) Liquid chromatography followed by tandem Mass Spectrometry (LC-MS/MS) confirms the decrease of DNA methylation in Mcm3ap and Spop KOs. *P < 0.05, **P < 0.01, ****P < 0.0001 (two-sided Holm-Sidak post-hoc test following ANOVA). (f) A restriction-enzyme based technique (LUMA) confirms the decrease of DNA methylation in Mcm3ap and Spop KOs. ***P < 0.001, ****P < 0.0001 (two-sided Holm-Sidak post-hoc test following ANOVA). Data from n = 3 independent KO clones are presented as mean values +/- SD for panels b and e-f.

Extended Data Fig. 4 Additional characterizations of the transcriptional 2-cell-like signature in the Mcm3ap, Spop, Zbtb14, and Kdm5c Kos.

(a) RNA-seq statistics: differentially expressed genes (|FC | > 2; FDR < 1%) in each KO condition. (b) Genome browser tracks depicting RNA-seq profiles of 2CLC markers reactivated in the KOs. (c) RT-qPCR analysis: genetic rescue of each KO suppresses 2CLC marker induction. (d) Gene Set Enrichment Analysis (GSEA): the 2CLC signature is enriched in each individual KO. (e) GSEA: metabolic pathways downregulated in 2CLCs38 are also downregulated in the KOs. (f) Increased ZSCAN4-positive staining in the indicated KO populations. Data from n = 812 cells; n = 501 cells; n = 757 cells; n = 576 cells and n = 547 cells are presented for, DASH, Mcm3ap KO, Spop KO, Zbtb14 KO and Kdm5c KO, respectively. ****P < 0.0001 (Dunn’s post-hoc test following Kruskal-Wallis test) (g) Reactivation of an LTR-GFP reporter after siRNA of the indicated factors. Data from n = 3 independent replicates are presented as mean values +/- SD. *P < 0.05, **P < 0.01, ***P < 0.001 (two-sided Holm-Sidak post-hoc test following ANOVA).

Extended Data Fig. 5 Trp53 is not required for the activation of 2CLC markers in the Mcm3ap, Spop, Zbtb14, and Kdm5c Kos.

(a) Experimental scheme for Trp53 depletion. (b) RT-qPCR analysis: Trp53 mRNA is efficiently depleted in all KOs. (c) The p53 protein is efficiently depleted, example of western blot on WT cells. (d) RT-qPCR analysis: the induction of 2CLC markers is Trp53-independent. (e) Expression of the indicated genes in single ES cells sorted according to ZSCAN4 and MERVL expression. Data from n = 3 independent KO clones are presented as mean values +/- SD for panels b and d.

Source data

Extended Data Fig. 6 Limited overlap between ZBTB14 binding and transcriptional response to ZBTB14 loss.

(a) MA-plot on the RNA-seq data from Zbtb14 KO cells relative to WT ES cells. This is the same data as in Fig. 4a. (b) Only a minority of promoters bound by ZBTB14 respond transcriptionally to Zbtb14 KO, and vice versa. (c) and (d) ZBTB14 and ZSCAN4 have coevolved closely. The scores are from CladeOScope, http://cladeoscope.cs.huji.ac.il. A smaller score means tighter co-evolution.

Extended Data Fig. 7 KDM5C binds additional germline/2CLC genes in ESCs.

(a) Genome browser tracks illustrating the binding of KDM5C to the Taf7l and Ddx4 promoters. (b) 85% of the germline genes that are regulated similarly to Dazl are bound by KDM5C in ESCs. (c) 25% of the germline genes that are regulated similarly to Dazl18 are bound and silenced by KDM5C in ESCs. (d) KDM5C expression has no effect on the global level of H3K4me1/2/3. Western blotting was performed in the indicated cellular backgrounds. Significance: hypergeometric test for panels b-c.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Table 1: MAGeCK output of the screen. Table 2: Oligonucleotide sequences used in this study. Table 3: WGBS basic sequencing metrics. Table 4: RNA-seq differentially expressed genes (DESeq2 output).

Source data

Source Data Fig. 3

Unprocessed western blots for Fig. 3.

Source Data Fig. 4

Unprocessed western blots for Fig. 4.

Source Data Fig. 6

Unprocessed western blots for Fig. 6.

Source Data Fig. 7

Unprocessed western blots for Fig. 7.

Source Data Extended Data Fig. 5

Unprocessed western blots for Extended Data Fig. 5.

Source Data Extended Data Fig. 7

Unprocessed western blots for Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Yakhou, L., Albert, J.R. et al. A genome-wide screen reveals new regulators of the 2-cell-like cell state. Nat Struct Mol Biol 30, 1105–1118 (2023). https://doi.org/10.1038/s41594-023-01038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01038-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing