Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multi-functional Smc5/6 complex in genome protection and disease

Abstract

Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architecture of the Smc5/6 complex.
Fig. 2: Structures of different subunits and subcomplexes of the Smc5/6 complex.
Fig. 3: Multifaceted roles of Smc5/6 in recombinational repair and DNA replication.
Fig. 4: Summary of phenotypes caused by defective Smc5/6 in mammalian systems.

Similar content being viewed by others

References

  1. Hoencamp, C. & Rowland, B. D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00609-8 (2023).

  2. Aragón, L. The Smc5/6 Complex: new and old functions of the enigmatic long-distance relative. Annu. Rev. Genet. 52, 89–107 (2018).

    Article  PubMed  Google Scholar 

  3. Yu, Y. et al. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc. Natl Acad. Sci. USA 118, e2026844118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taschner, M. et al. Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding. EMBO J. 40, e107807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hallett, S. T. et al. Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Res. 49, 4534–4549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Serrano, D. et al. The Smc5/6 core complex is a structure-specific DNA binding and compacting machine. Mol. Cell 80, 1025–1038 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gutierrez-Escribano, P. et al. Purified Smc5/6 complex exhibits DNA substrate recognition and compaction. Mol. Cell 80, 1039–1054 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Higashi, T. L., Pobegalov, G., Tang, M., Molodtsov, M. I. & Uhlmann, F. A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 10, e67530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bauer, B. W. et al. Cohesin mediates DNA loop extrusion by a ‘swing and clamp’ mechanism. Cell 184, 5448–5464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petela, N. J. et al. Folding of cohesin’s coiled coil is important for Scc2/4-induced association with chromosomes. eLife 10, e67268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pradhan, B. et al. The Smc5/6 complex is a DNA loop-extruding motor. Nature 616, 843–848 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adamus, M. et al. Molecular insights into the architecture of the human SMC5/6 complex. J. Mol. Biol. 432, 3820–3837 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Hallett, S. T. et al. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res. 50, 9505–9520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duan, X. et al. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell 35, 657–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan, X. et al. Architecture of the Smc5/6 complex of Saccharomyces cerevisiae reveals a unique interaction between the Nse5-6 subcomplex and the hinge regions of Smc5 and Smc6. J. Biol. Chem. 284, 8507–8515 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pebernard, S., Wohlschlegel, J., McDonald, W. H., Yates, J. R. III & Boddy, M. N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 26, 1617–1630 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Räschle, M. et al. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oravcova, M. et al. The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers. eLife 11, e79676 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wan, B., Wu, J., Meng, X., Lei, M. & Zhao, X. Molecular basis for control of diverse genome stability factors by the multi-BRCT scaffold Rtt107. Mol. Cell 75, 2690–2699 (2016).

    Google Scholar 

  20. Oravcová, M. et al. Brc1 promotes the focal accumulation and SUMO ligase activity of Smc5-Smc6 during replication stress. Mol. Cell. Biol. 39, e00271-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leung, G. P., Lee, L., Schmidt, T. I., Shirahige, K. & Kobor, M. S. Rtt107 is required for recruitment of the SMC5/6 complex to DNA double strand breaks. J. Biol. Chem. 286, 26250–26257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Etheridge, T. J. et al. Live-cell single-molecule tracking highlights requirements for stable Smc5/6 chromatin association in vivo. eLife 10, e68579 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai, J. et al. The transcriptional coactivator ADA2b recruits a structural maintenance protein to double-strand breaks during DNA repair in plants. Plant Physiol. 176, 2613–2622 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahrik, L. et al. The SAGA histone acetyltransferase module targets SMC5/6 to specific genes. Epigenetics Chromatin 16, 6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, J. et al. A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells. Proc. Natl Acad. Sci. USA 116, 15288–15296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, J. et al. A diRNA-protein scaffold module mediates SMC5/6 recruitment in plant DNA repair. Plant Cell 34, 3899–3914 (2022).

    Article  PubMed  Google Scholar 

  27. Hudson, J. J. R. et al. Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS ONE 6, e17270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palecek, J. J. & Gruber, S. Kite proteins: a superfamily of SMC/Kleisin partners conserved across bacteria, archaea and eukaryotes. Structure 23, 2183–2190 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Ibars, E. et al. Ubiquitin proteomics identifies RNA polymerase I as a target of the Smc5/6 complex. Cell Rep. 42, 112463 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Kolesar, P., Stejskal, K., Potesil, D., Murray, J. M. & Palecek, J. J. Role of Nse1 subunit of SMC5/6 complex as a ubiquitin ligase. Cells 11, 165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Doyle, J. M., Gao, J., Wang, J., Yang, M. & Potts, P. R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 39, 963–974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jo, A., Li, S., Shin, J. W., Zhao, X. & Cho, Y. Structure basis for shaping the Nse4 protein by the Nse1 and Nse3 dimer within the Smc5/6 complex. J. Mol. Biol. 433, 166910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, Y. et al. Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc. Natl Acad. Sci. USA 119, e2202799119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alt, A. et al. Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat. Commun. 8, 14011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zabrady, K. et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 44, 1064–1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Tanasie, N. L., Gutierrez-Escribano, P., Jaklin, S., Aragon, L. & Stigler, J. Stabilization of DNA fork junctions by Smc5/6 complexes revealed by single-molecule imaging. Cell Rep. 41, 111778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, J. T. et al. Smc5/6’s multifaceted DNA binding capacities stabilize branched DNA structures. Nat. Commun. 13, 7179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanno, T., Berta, D. G. & Sjögren, C. The Smc5/6 complex is an ATP-dependent intermolecular DNA linker. Cell Rep. 12, 1471–1482 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Taschner, M. & Gruber, S. DNA segment capture by Smc5/6 holo-complexes. Nat. Struct. Mol. Biol. 30, 619–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andrews, E. A. et al. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185–196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Potts, P. R. & Yu, H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varejão, N. et al. Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs. Nat. Commun. 12, 7013 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, S. et al. Esc2 orchestrates substrate-specific sumoylation by acting as a SUMO E2 cofactor in genome maintenance. Genes Dev. 35, 261–272 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prudden, J. et al. DNA repair and global sumoylation are regulated by distinct Ubc9 noncovalent complexes. Mol. Cell. Biol. 31, 2299–2310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bermúdez-López, M. et al. ATPase-dependent control of the Mms21 SUMO ligase during DNA repair. PLoS Biol. 13, e1002089 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Varejão, N. et al. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J. 37, e98306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bonner, J. N. et al. Smc5/6 mediated sumoylation of the Sgs1-Top3-Rmi1 complex promotes removal of recombination intermediates. Cell Rep. 16, 368–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bermúdez-López, M. et al. Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev. 30, 1339–1356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pond, K. W., de Renty, C., Yagle, M. K. & Ellis, N. A. Rescue of collapsed replication forks is dependent on NSMCE2 to prevent mitotic DNA damage. PLoS Genet. 15, e1007942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jacome, A. et al. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J. 34, 2604–2619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sollier, J. et al. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol. Biol. Cell 20, 1671–1682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xue, X. et al. Restriction of replication fork regression activities by a conserved SMC complex. Mol. Cell 56, 436–445 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu-Hung, C. et al. Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc. Natl Acad. Sci. USA 106, 21252–21257 (2009).

    Article  Google Scholar 

  55. Rossi, F. et al. SMC5/6 acts jointly with Fanconi anemia factors to support DNA repair and genome stability. EMBO Rep. 21, e48222 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Jeppsson, K., Kanno, T., Shirahige, K. & Sjögren, C. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15, 601–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Hong, Y. et al. The SMC-5/6 complex and the HIM-6 (BLM) helicase synergistically promote meiotic recombination intermediate processing and chromosome maturation during Caenorhabditis elegans meiosis. PLoS Genet. 12, e1005872 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Toraason, E., Salagean, A., Almanzar, D. E., Rog, O. & Libuda, D. E. BRCA1/BRC-1 and SMC-5/6 regulate DNA repair pathway engagement during C. elegans meiosis. Preprint at bioRxiv https://doi.org/10.1101/2022.06.12.495837 (2022).

  59. Hwang, G. et al. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development 144, 1648–1660 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Verver, D. E., van Pelt, A. M. M., Repping, S. & Hamer, G. Role for rodent Smc6 in pericentromeric heterochromatin domains during spermatogonial differentiation and meiosis. Cell Death Dis. 4, e749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caridi, C. P. et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559, 54–60 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barroso-González, J. et al. RAD51AP1 is an essential mediator of alternative lengthening of telomeres. Mol. Cell 76, 11–26 (2019).

    Article  PubMed  Google Scholar 

  63. Potts, P. R. & Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14, 581–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Liang, J. et al. SUMO E3 ligase Mms21 prevents spontaneous DNA damage induced genome rearrangements. PLoS Genet. 14, e1007250 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Peng, X. P. et al. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet. 14, e1007129 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moradi‐Fard, S., Mojumdar, A., Chan, M., Harkness, T. A. A. & Cobb, J. A. Smc5/6 in the rDNA modulates lifespan independently of Fob1. Aging Cell 20, e13373 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Agashe, S. et al. Smc5/6 functions with Sgs1–Top3–Rmi1 to complete chromosome replication at natural pause sites. Nat. Commun. 12, 2111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dhingra, N., Wei, L. & Zhao, X. Replication protein A (RPA) sumoylation positively influences the DNA damage checkpoint response in yeast. J. Biol. Chem. 294, 2690–2699 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Whalen, J. M., Dhingra, N., Wei, L., Zhao, X. & Freudenreich, C. H. Relocation of collapsed forks to the nuclear pore complex depends on sumoylation of DNA repair proteins and permits Rad51 association. Cell Rep. 31, 107635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zapatka, M. et al. Sumoylation of Smc5 promotes error-free bypass at damaged replication forks. Cell Rep. 29, 3160–3172 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Meng, X., Wei, L., Peng, X. P. & Zhao, X. Sumoylation of the DNA polymerase ε by the Smc5/6 complex contributes to DNA replication. PLoS Genet. 15, e1008426 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Winczura, A., Appanah, R., Tatham, M. H., Hay, R. T. & De Piccoli, G. The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ε. PLoS Genet. 15, e1008427 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gallego-Paez, L. M. et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell 25, 302–317 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pryzhkova, M. V. & Jordan, P. W. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. Development 143, e1.2–e1.2 (2016).

    Article  Google Scholar 

  75. Gaddipati, H., Pryzhkova, M. V. & Jordan, P. W. Conditional mutation of SMC5 in mouse embryonic fibroblasts. Methods Mol. Biol. 2004, 35–46 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Venegas, A. B., Natsume, T., Kanemaki, M. & Hickson, I. D. Inducible degradation of the human SMC5/6 complex reveals an essential role only during interphase. Cell Rep. 31, 107533 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Atkins, A. et al. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 9, e61171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Diaz, M. & Pecinka, A. Scaffolding for repair: understanding molecular functions of the SMC5/6 complex. Genes 9, 36 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yang, F. & Pecinka, A. Multiple roles of SMC5/6 complex during plant sexual reproduction. Int. J. Mol. Sci. 23, 4503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, L., Chen, H., Wang, C., Hu, Z. & Yan, S. Negative regulator of E2F transcription factors links cell cycle checkpoint and DNA damage repair. Proc. Natl Acad. Sci. USA 115, E3837–E3845 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, Y. et al. The Arabidopsis SUMO E3 Ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation. Plant Cell 28, 2225–2237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khan, S., Ahamad, N., Bhadra, S., Xu, Z. & Xu, Y. J. Smc5/6 complex promotes Rad3(ATR) checkpoint signaling at the perturbed replication fork through sumoylation of the RecQ helicase Rqh1. Mol. Cell. Biol. 42, e0004522 (2022).

    Article  PubMed  Google Scholar 

  83. Rodriguez, E. et al. DNA damage as a consequence of NLR activation. PLoS Genet. 14, e1007235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen, H. et al. RAD51 supports DMC1 by inhibiting the SMC5/6 complex during meiosis. Plant Cell 33, 2869–2882 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhu, L. et al. Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2021970118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang, F. et al. Defects in meiotic chromosome segregation lead to unreduced male gametes in Arabidopsis SMC5/6 complex mutants. Plant Cell 33, 3104–3119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yong-Gonzales, V., Hang, L. E., Castellucci, F., Branzei, D. & Zhao, X. The Smc5-Smc6 complex regulates recombination at centromeric regions and affects kinetochore protein sumoylation during normal growth. PLoS ONE 7, e51540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Payne, F. et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J. Clin. Invest. 124, 4028–4038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. van der Crabben, S. N. et al. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Invest. 126, 2881–2892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Grange, L. J. et al. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat. Commun. 13, 6664 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin, C. A. et al. Mutations in TOP3A cause a Bloom Syndrome-like disorder. Am. J. Hum. Genet. 103, 221–231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cunniff, C., Bassetti, J. A. & Ellis, N. A. Bloom’s syndrome: clinical spectrum, molecular pathogenesis and cancer predisposition. Mol. Syndromol. 8, 4–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Hudson, D. F. et al. Loss of RMI2 increases genome instability and causes a Bloom-like syndrome. PLoS Genet. 12, e1006483 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bellelli, R. & Boulton, S. J. Spotlight on the replisome: aetiology of DNA replication-associated genetic diseases. Trends Genet. 37, 317–336 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Taylor, A. M. R. et al. Chromosome instability syndromes. Nat. Rev. Dis. Primers 5, 64 (2019).

    Article  PubMed  Google Scholar 

  96. Kampen, K. R., Sulima, S. O., Vereecke, S. & De Keersmaecker, K. Hallmarks of ribosomopathies. Nucleic Acids Res. 48, 1013–1028 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Irwan, I. D. & Cullen, B. R. The SMC5/6 complex: an emerging antiviral restriction factor that can silence episomal DNA. PLoS Pathog. 19, e1011180 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Decorsière, A. et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531, 386–389 (2016).

    Article  PubMed  Google Scholar 

  99. Murphy, C. M. et al. Hepatitis B Virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 16, 2846–2854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dupont, L. et al. The SMC5/6 complex compacts and silences unintegrated HIV-1 DNA and is antagonized by Vpr. Cell Host Microbe 29, 792–805.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yiu, S. P. T., Guo, R., Zerbe, C., Weekes, M. P. & Gewurz, B. E. Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep. 38, 110411 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Han, C. et al. KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-proteasome system. PLoS Pathog. 18, e1010744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Niu, C. et al. The Smc5/6 complex restricts HBV when localized to ND10 without inducing an innate immune response and is counteracted by the HBV X protein shortly after infection. PLoS ONE 12, e0169648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Irwan, I. D., Bogerd, H. P. & Cullen, B. R. Epigenetic silencing by the SMC5/6 complex mediates HIV-1 latency. Nat. Microbiol. 7, 2101–2113 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gibson, R. T. & Androphy, E. J. The SMC5/6 complex represses the replicative program of high-risk human papillomavirus type 31. Pathogens 9, 786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, W. et al. PJA1 coordinates with the SMC5/6 complex to restrict DNA viruses and episomal genes in an interferon-independent manner. J. Virol. 92, e00825-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  108. Sekiba, K. et al. HBx-induced degradation of Smc5/6 complex impairs homologous recombination-mediated repair of damaged DNA. J. Hepatol. 76, 53–62 (2021).

    Article  PubMed  Google Scholar 

  109. Bentley, P., Tan, M. J. A., McBride, A. A., White, E. A. & Howley, P. M. The SMC5/6 complex interacts with the papillomavirus E2 protein and influences maintenance of viral episomal DNA. J. Virol. 92, e00356-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Saribas, S. & Safak, M. A comprehensive proteomics analysis of the JC Virus (JCV) large and small tumor antigen interacting proteins: large T primarily targets the host protein complexes with V-ATPase and ubiquitin ligase activities while small t mostly associates with those having phosphatase and chromatin-remodeling functions. Viruses 12, 1192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge NIGMS grant no. R35GM145260 (awarded to X.Z.). Due to space restrictions, references to early studies of Smc5/6 are not thoroughly included.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to original draft preparation and editing.

Corresponding author

Correspondence to Xiaolan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks Ales Pecinka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Sara Osman, in collaboration with the Nature Structural & Molecular Biology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X.P., Zhao, X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 30, 724–734 (2023). https://doi.org/10.1038/s41594-023-01015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01015-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer