Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity

Abstract

Little is understood about how the two major types of heterochromatin domains (HP1 and Polycomb) are kept separate. In the yeast Cryptococcus neoformans, the Polycomb-like protein Ccc1 prevents deposition of H3K27me3 at HP1 domains. Here we show that phase separation propensity underpins Ccc1 function. Mutations of the two basic clusters in the intrinsically disordered region or deletion of the coiled-coil dimerization domain alter phase separation behavior of Ccc1 in vitro and have commensurate effects on formation of Ccc1 condensates in vivo, which are enriched for PRC2. Notably, mutations that alter phase separation trigger ectopic H3K27me3 at HP1 domains. Supporting a direct condensate-driven mechanism for fidelity, Ccc1 droplets efficiently concentrate recombinant C. neoformans PRC2 in vitro whereas HP1 droplets do so only weakly. These studies establish a biochemical basis for chromatin regulation in which mesoscale biophysical properties play a key functional role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C. neoformans H3K27me3 reader protein Ccc1 undergoes phase separation in vitro.
Fig. 2: Phase separation is programmed by coiled-coil-mediated dimerization and two basic charged clusters in IDR.
Fig. 3: Phase separation-controlling elements program formation of nuclear condensation in vivo.
Fig. 4: Suppression of ectopic H3K27me3 deposition by Ccc1 requires phase separation-controlling elements.
Fig. 5: Ccc1 condensates selectively concentrate PRC2 in vitro.
Fig. 6: Ccc1 within droplets displays undetectable mobility whereas PRC2 displays low mobility.

Similar content being viewed by others

Data availability

ChIP–seq data were deposited in the Gene Expression Omnibus under accession no. GSE195824. Live cell imaging data to quantify nuclear condensates were deposited in Figshare (https://figshare.com/s/ecee627ee1c7d05a91b0). Source data are provided with this paper.

Code availability

The customized Cellprofiler pipeline is described in Supplementary Table 1 and available at https://github.com/madhanicode/sujinlee_cellprofiler. The scripts used to analyze and generate graphs for ChIP-seq data are available at https://github.com/madhanicode/sujinlee_chipseq.

References

  1. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

    CAS  PubMed  Google Scholar 

  2. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    CAS  PubMed  Google Scholar 

  3. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Grau, D. J. et al. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev. 25, 2210–2221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lau, M. S. et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 355, 1081–1084 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tatavosian, R. et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

    CAS  PubMed  Google Scholar 

  9. Kim, J. & Kingston, R. E. The CBX family of proteins in transcriptional repression and memory. J. Biosci. 45, 16 (2020).

    CAS  PubMed  Google Scholar 

  10. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183, 1772–1784.e13 (2020).

    CAS  PubMed  Google Scholar 

  12. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

    CAS  PubMed  Google Scholar 

  13. Narlikar, G. J. Phase-separation in chromatin organization. J. Biosci. 45, 5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation. Mol. Cell 78, 236–249.e7 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dumesic, P. A. et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160, 204–218 (2015).

    CAS  PubMed  Google Scholar 

  16. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    CAS  PubMed  Google Scholar 

  17. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).

    CAS  PubMed  Google Scholar 

  20. Zhang, Q. et al. Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol. Cell 69, 334–346.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    CAS  PubMed  Google Scholar 

  25. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    CAS  Google Scholar 

  26. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Ranganathan, S. & Shakhnovich, E. I. Dynamic metastable long-living droplets formed by sticker-spacer proteins. eLife 9, e56159 (2020).

    PubMed  PubMed Central  Google Scholar 

  28. Boeynaems, S. et al. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, Y. & Lin, X. Multiple applications of a transient CRISPR–Cas9 coupled with electroporation (TRACE) system in the Cryptococcus neoformans species complex. Genetics 208, 1357–1372 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, M. Y. et al. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging. Genetics 220, iyab180 (2022).

    PubMed  Google Scholar 

  31. Walther, T. C. et al. The conserved Nup107–160 complex Is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    CAS  PubMed  Google Scholar 

  32. Ebrahimi, H. & Cooper, J. P. Finding a place in the SUN: telomere maintenance in a diverse nuclear landscape. Curr. Opin. Cell Biol. 40, 145–152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564–E2569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 10, e64563 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan, H. et al. BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Nat. Genet. 52, 1384–1396 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Seif, E. et al. Phase separation by the polyhomeotic sterile alpha motif compartmentalizes Polycomb group proteins and enhances their activity. Nat. Commun. 11, 5609 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huseyin, M. K. & Klose, R. J. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat. Commun. 12, 887 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eeftens, J. M., Kapoor, M., Michieletto, D. & Brangwynne, C. P. Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction. Nat. Commun. 12, 5888 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grau, D. et al. Structures of monomeric and dimeric PRC2:EZH1 reveal flexible modules involved in chromatin compaction. Nat. Commun. 12, 714 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y. et al. Nuclear condensates of p300 formed though the structured catalytic core can act as a storage pool of p300 with reduced HAT activity. Nat. Commun. 12, 4618 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Darzacq, X. & Tjian, R. Weak multivalent biomolecular interactions: a strength versus numbers tug of war with implications for phase partitioning. RNA 28, 48–51 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chun, C. D. & Madhani, H. D. Applying genetics and molecular biology to the study of the human pathogen Cryptococcus neoformans. Methods Enzymol. 470, 797–831 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Burke, J. E. et al. Spliceosome profiling visualizes operations of a dynamic RNP at nucleotide resolution. Cell 173, 1014–1030.e17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Erdős, G., Pajkos, M. & Dosztányi, Z. IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res. 49, W297–W303 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Simm, D., Hatje, K. & Kollmar, M. Waggawagga: comparative visualization of coiled-coil predictions and detection of stable single α-helices (SAH domains). Bioinformatics 31, 767–769 (2015).

    CAS  PubMed  Google Scholar 

  50. Trigg, J., Gutwin, K., Keating, A. E. & Berger, B. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone. PLoS ONE 6, e23519 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Google Scholar 

  53. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Koulouras, G. et al. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res. 46, W467–W472 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Madhani laboratory for helpful discussions and G. J. Narlikar, R. Pappu, D. Canzio and P. A. Dumesic for critical reading of the manuscript. We thank S. Lei for help with making a figure, T. Lou for help with condensate assays, M. Jaime-Garza for help with the mass photometer, K. Herrington and S.Y. Kim at the Center for Advanced Light Microscopy (UCSF) for technical advice. Sequencing was performed at the UCSF CAT, supported by UCSF PBBR, RRP IMIA and National Institutes of Health (NIH; grant no. 1S10OD028511-01). This work was supported by the US NIH (grant no. R01GM71801 to H.D.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and H.D.M. designed the experiments and wrote the manuscript. H.D.M. supervised all aspects of this work. S.L. performed most of the experiments and analyzed the data. S.A.-A. and K.-J.A. performed and supervised purification of the recombinant PRC2 and histone methyltransferase assay. A.G. generated a customized CellProfiler pipeline to analyze nuclear foci. D.S.P. performed analysis of nuclear foci and ChIP–seq. M.Y.H. analyzed ChIP–seq. B.R. helped with protein purification and ChIP. J.K.D., J.J.M. and J.R.Y. performed, analyzed and supervised MS.

Corresponding author

Correspondence to Hiten D. Madhani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Sara Osman and Dimitris Typas were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Ccc1 is not a tightly bound core subunit of PRC2 complex.

(a) Expression of endogenous Ccc1 and Ezh2 with a C-terminal CBP-2XFLAG tag, as assessed by western blotting using the antibodies indicated on the left. H3 serves as a loading control. Data are representative of two independent experiments. Protein interaction partners of (b) Ccc1 and (c) Ezh2. Each bait protein was purified by tandem affinity purification following DNase treatment and its protein interaction partners were determined by mass spectrometry. Subunits of the PRC2 complex are indicated in bold. Likely contaminants have been excluded (Supplementary Table 4).

Source data

Extended Data Fig. 2 Determination of oligomerization status of purified Ccc1 wild-type and mutants.

(a) Purified 6XHis-Ccc1 wild-type, C-terminally truncated Ccc1-CC∆ (1-434 amino acids), and IDR mutants. Data are representative of three independent experiments. Mass photometry analysis of (b) Ccc1 wild-type, (c) Ccc1-CC∆, (d) Ccc1 IDR mutants in 20 mM HEPES, pH 7.5, and 250 mM NaCl.

Extended Data Fig. 3 Ccc1 undergoes phase separation in vitro and forms liquid-like droplets.

(a) DIC images of concentration-dependent wild-type Ccc1 condensate formation in 20 mM HEPES, pH 7.5, and 250 mM NaCl. Scale bars, 10 µm. (b) Ccc1 condensate formation with or without prior nuclease treatment. For nuclease treatment, 20 µl of 20 µM Ccc1 was incubated with 1 µl of TURBO DNase (2 U/µl) and 1 µl of RNase A (10 mg/ml) at RT for 1 h. Scale bars, 10 µm. (c) Ccc1 condensate formation in the presence of 2.7 kbp DNA. Scale bars, 10 µm. (d) Salt-dependent Ccc1 condensate formation. Phase separation of 5 µM Ccc1 was induced for 30 min in 20 mM HEPES, pH 7.5, buffer containing 500, 250, and 150 mM NaCl. Scale bars, 10 µm. (e) Salt-dependent reversibility of Ccc1 condensate formation. After 10 min induction of condensate formation in 20 mM HEPES, pH 7.5, and 250 mM NaCl, NaCl concentration of buffer was adjusted to 500 mM. Scale bars, 10 µm. (f) After 10 min induction of condensate formation in 20 mM HEPES, pH 7.5, and 150 mM NaCl, NaCl concentration of buffer was adjusted to 250 mM. Scale bars, 10 µm. Data are representative of three (a, d, e, f) or two (b, c) independent experiments.

Extended Data Fig. 4 Ccc1 phase separation is programmed by two basic charged clusters in IDR.

(a) Ccc1 protein sequence. IDR, chromodomain, coiled-coil, and IDR mutation sites are as indicated. (b) Ccc1 charge distribution. (c) Concentration-dependent condensate formation of Ccc1 wild-type and IDR mutants in 20 mM HEPES, pH 7.5, and 250 mM NaCl after 2 h of plating. Scale bars, 10 µm. Data are representative of three independent experiments.

Extended Data Fig. 5 Ccc1 foci are enriched for Ezh2.

(a) Live cell images of Ccc1-2XEGFP foci in the wild-type and ezh2∆. Scale bars, 5 µm. (b) Live cell images of cells expressing 2XmNeonGreen-Ezh2 and Ccc1 variants tagged with 2XmCherry. Scale bars, 5 µm. Data in a and b are representative of three independent experiments.

Extended Data Fig. 6 Ccc1 foci are colocalized with H3K27me3.

(a) Live cell images of Ccc1 variants tagged with 2XmCherry. Scale bars, 5 µm. (b) Distribution of H3K27me3 in cells expressing Ccc1 variants tagged with 2XmCherry. Scale bars, 2 µm. Data in a and b are representative of three independent experiments.

Extended Data Fig. 7 ChIP-seq analysis of the replicate sequencing libraries.

(a) Average centromeric H3K27me3. (b) Average subtelomeric H3K27me3. (c) H3K27me3 at subtelomeric (blue bar) versus centromeric regions (green bar) as measured by ChIP-seq. Density (RPKM) of signal above background is reported. (d) ChIP-seq traces of H3K27me3 signal across chromosome 13 in cells expressing Ccc1 variants or cells lacking Ccc1 or Ezh2.

Extended Data Fig. 8 Purification of catalytically active PRC2 complex and Swi6.

(a) Schematic representation of the PRC2 coexpression construct. Each gene expression cassette contains a polyhedrin promoter (PPH), a cDNA of the PRC2 component, and an SV40 terminator (term). The cDNAs are tagged as follows: 3XStrep-TagII-HRV3C-EZH2, 9XHis-HRV3C-EED1, FLAG-HRV3C-BND1, and 6XHis-TEV-MSL1. (b) Agarose gel of SwaI-digested construct in (a). (c) Coomassie stained SDS-polyacrylamide gel of the purified recombinant PRC2. (d) (Left) SAH standard curve (Right) Histone Methyltransferase assay of the recombinant PRC2 on the nucleosome assembled with Xenopus histone H3 (28SAPAT32 replaced for 28QTTTSAAA34 of C. neoformans histone H3). (Mean ± SEM, n = 3 independent replicates) (e) Purified 6XHis-Swi6. (f) Mass photometry analysis of Swi6 in 20 mM HEPES, pH 7.5, and 150 mM NaCl. (g) DIC images of concentration-dependent Swi6 condensate formation in 20 mM HEPES, pH 7.5, and 125 mM NaCl 30 min after plating. Scale bars, 10 µm. (h) Condensate fusion of 189 µM Swi6 at indicated time points. Scale bars, 10 µm. Data in b, c, e, g, and h are representative of three independent experiments.

Source data

Supplementary information

Supplementary Information

Supplementary Table 2.

Reporting Summary

Supplementary Video 1

In vitro condensate formation of 23 µM Ccc1 wild-type over 2 h.

Supplementary Video 2

In vitro condensate formation of 23 µM Ccc1-4KRA over 2 h.

Supplementary Table 1

Supplementary Tables 1, 3 and 4.

Supplementary Video 3

The 3D images of Swi6-2xmCherry foci and Ccc1-2xEGFP foci in a single cell.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Abini-Agbomson, S., Perry, D.S. et al. Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity. Nat Struct Mol Biol 30, 891–901 (2023). https://doi.org/10.1038/s41594-023-01000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-023-01000-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing