Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease

Abstract

Cas12i is a recently identified type V CRISPR-Cas endonuclease that predominantly cleaves the non-target strand of a double-stranded DNA substrate. This nicking activity of Cas12i could potentially be used for genome editing with high specificity. To elucidate its mechanisms for target recognition and cleavage, we determined cryo-EM structures of Cas12i in multiple functional states. Cas12i pre-orders a seven-nucleotide seed sequence of the crRNA for target recognition and undergoes a two-step activation through crRNA–DNA hybridization. Formation of 14 base pairs activates the nickase activity, and 28-bp hybridization promotes cleavage of the target strand. The atomic structures and mechanistic insights gained should facilitate the manipulation of Cas12i for genome editing applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the Cas12i–crRNA–dsDNA ternary complex.
Fig. 2: Pre-crRNA processing, substrate recognition and cleavage by Cas12i.
Fig. 3: Mechanism of Cas12i activation.
Fig. 4: The lid in Cas12 endonucleases.

Similar content being viewed by others

Data availability

Cryo-EM reconstructions of Cas12i(E894A)–crRNA–dsDNA, Cas12i–crRNA and the I1 complexes have been deposited in the Electron Microscopy Data Bank under accession nos. EMD-21541, EMD-21551 and EMD-21552, respectively. Coordinates for atomic models of Cas12i(E894A)–crRNA–dsDNA, Cas12i–crRNA and the I1 complexes have been deposited in the Protein Data Bank under accession nos. 6W5C, 6W62 and 6W64, respectively. Source data are provided with this paper.

References

  1. Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016).

    Article  PubMed  CAS  Google Scholar 

  2. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing Nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Sorek, R., Lawrence, C. M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Ann. Rev. Biochem. 82, 237–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Marraffini, L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

    CAS  PubMed  Google Scholar 

  5. Jiang, F. & Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Hille, F. et al. The biology of CRISPR-Cas: backward and forward. Cell 172, 1239–1259 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Barrangou, R. & Marraffini, L. A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell 54, 234–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Komor, A. C., Badran, A. H. & Liu, D. R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168, 20–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Bi, H. et al. CRISPR disruption of BmOvo resulted in the failure of emergence and affected the wing and gonad development in the silkworm Bombyx mori. Insects https://doi.org/10.3390/insects10080254 (2019).

  16. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strecker, J. et al. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teng, F. et al. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 4, 63 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swarts, D. C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knott, G. J. et al. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat. Struct. Mol. Biol. 24, 825–833 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murugan, K., Babu, K., Sundaresan, R., Rajan, R. & Sashital, D. G. The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Mol. Cell 68, 15–25 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714–726 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167, 1814–1828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, L. et al. C2c1–sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 65, 310–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Swarts, D. C. Stirring up the type V alphabet soup. CRISPR J. 2, 14–16 (2019).

    Article  PubMed  Google Scholar 

  31. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, P., Yang, H., Rajashankar, K. R., Huang, Z. & Patel, D. J. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26, 901–913 (2016).

    PubMed Central  Google Scholar 

  35. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamano, T. et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol. Cell 67, 633–645 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stella, S., Alcón, P. & Montoya, G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546, 559–563 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Stella, S. et al. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175, 1856–1871 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Nishimasu, H. et al. Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1. Mol. Cell 67, 139–147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Swarts, D. C. & Jinek, M. Mechanistic Insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, H. et al. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins. Cell Host Microbe 25, 815–826 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Wu, D., Guan, X., Zhu, Y., Ren, K. & Huang, Z. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Cell Res. 27, 705–708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulcsár, P. I. et al. Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5′G-extended sgRNAs. Nat. Commun. https://doi.org/10.1038/s41467-020-15021-5 (2020).

  47. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife https://doi.org/10.7554/eLife.42166 (2018).

  49. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Klose and V. Bowman for help with cryo-EM, S. Wilson for computation and J. Tesmer and C. Gabel for critical reading of the manuscript. This work was supported by NIH grant no. R01GM138675 and a Showalter Trust Research Award to L.C.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., R.X. and Z.L. prepared samples. Z.L., H.Z. and L.C. collected and processed cryo-EM data. H.Z. and R.X. performed biochemical analysis. Z.L., H.Z. and L.C. prepared figures. All authors analyzed the data. H.Z., Z.L. and L.C. prepared the manuscript with input from R.X.

Corresponding authors

Correspondence to Heng Zhang or Leifu Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Katarzyna Marcinkiewicz and Anke Sparmann were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample preparation and cryo-EM for the Cas12i(E894A)-crRNA-dsDNA complex.

a, Purification of Cas12i. Upper: Size exclusion chromatography (SEC) profile of Cas12i. UV absorbance curves at 280 nm and 260 nm are shown in blue and red, respectively. Lower: SDS-PAGE analysis of the elution fractions from SEC as indicated. b, Urea-PAGE analysis of pre-crRNA before and after processing by Cas12i. RNA markers indicate that the mature crRNA is 51nt. c, A representative raw cryo-EM micrograph of the Cas12i-crRNA-dsDNA ternary complex. d, Representative 2D class averages. e, Two major classes from 3D classification. The two maps are similar, with class 2 at better quality. f, 3D auto-refinement using particles from class 2. Angular distribution of particles is shown on the right. g, Procedures used for improving the resolution of the PI domain. Focused refinement followed by focused 3D classification using a soft mask (in pink mesh) resulted in a 3D class from 13% particles with improved density in the PI domain. h, Plot of the global half-map FSC (solid red line), map-to-model FSC (solid orange line), and spread of directional resolution values (±1σ from mean, green dotted lines; the blue bars indicate a histogram of 100 such values evenly sampled over the 3D FSC). i, Local resolution map of the final reconstruction. Uncropped images for panels a and b are available as source data online.

Source data

Extended Data Fig. 2 Detailed cryo-EM density map of the Cas12i(E894A)-crRNA-dsDNA complex with final atomic model fitted in.

a, b, Fitting of nucleic acids to the corresponding cryo-EM map. The atomic models are shown in stick with crRNA, the target strand and the non-target strand colored in orange, magenta and cyan, respectively. Cryo-EM density from the sharpened map (a) or the unsharpened map (b) is shown in mesh. c, Fitting of the REC1 domain. A representative α-helix from the REC1 domain is shown in details on the right. d, Fitting of the WED domain. A representative β-strand is shown in details on the right. e, Fitting of the PI domain. f, Fitting of the RuvC domain. g, Fitting of the REC2 domain. h, Fitting of the Nuc domain. i, Fitting of the substrate DNA.

Extended Data Fig. 3 Structural comparison of Cas12i and Cas12b.

a, Overall structures of the Cas12i-crRNA-dsDNA and the Cas12b-gRNA-dsDNA complexes. The structures are aligned by secondary-structure matching (SSM) in COOT. bf, Structural comparison of each domain. Secondary structures in each domain are labeled. The PI domain and the extended α16 and α17 helix pair are indicated by circles and a box, respectively. g, Sequence alignment of the crRNA repeat adjacent to the spacer-derived segment between Cas12i and Cas12b.

Extended Data Fig. 4 Schematic of nucleic acid recognition in the Cas12i(E894A)-crRNA-dsDNA complex.

Intermolecular contacts between Cas12i and nucleic acids, including the target and non-target strands and the substrate DNA, are shown by solid lines. The Cas12i residues are colored based on the domain architecture.

Extended Data Fig. 5 Structure and mutagenesis analysis for the recognition of the crRNA-target DNA heteroduplex.

a, Structure of the Cas12i-crRNA-DNA complex with selected key residues involved in the recognition of the heteroduplex shown as sticks. b, Close-up view of the interactions shown in a with cryo-EM map shown in mesh. c, Substrate cleavage assay using wild-type Cas12i and Cas12i with single mutations on the key residues shown in a. The results shown are representative of three experiments. d, Substrate cleavage assay using poly-A, -T, -C, and G as substrates. The results shown are representative of three experiments. Uncropped images for panels c and d are available as source data online.

Source data

Extended Data Fig. 6 Cryo-EM data processing for the wild-type Cas12i-crRNA-dsDNA complex.

a, A representative raw cryo-EM micrograph of the wild-type Cas12i-crRNA-DNA complex. b, Representative 2D class averages. c, 3D classification. Three major classes are observed, representing the Cas12i-crRNA binary complex, the intermediate state (I1 state, 14-15 bp heteroduplex), and the fully assembled Cas12i-crRNA-DNA complex (26-28 bp heteroduplex). Densities corresponding to the crRNA and target DNA are colored in yellow. The Cas12i-crRNA map is comparable to a reconstruction using biochemically purified Cas12i-crRNA complex (data not shown). d, 3D auto-refinement for the three classes shown in c. Angular distribution of each reconstruction is shown below. e, Local resolution map of the final reconstructions in d. f, Plot of the global half-map FSC (solid red line), map-to-model FSC (solid orange line), and spread of directional resolution values (±1σ from mean, green dotted lines; the blue bars indicate a histogram of 100 such values evenly sampled over the 3D FSC).

Extended Data Fig. 7 Structural analysis of the seed sequence.

a, Superposition of the seed sequence of Cas12i (orange) with the same sequence simulated in an A-form geometry (blue). b, Structure of the seed sequence with Cas12i domains shown in surface representation.

Extended Data Fig. 8 Conformational changes of recognition loops in Cas12i upon heteroduplex formation.

a, Structure of the Cas12i-crRNA binary complex with cryo-EM density shown in mesh. Loop 726-737 is indicated. b, Structure of the I1 state with cryo-EM density shown in mesh. c, Structure of the Cas12i(E894A)-crRNA-DNA ternary complex with cryo-EM density shown in mesh. d, Structure showing three loops from the REC1 and REC2 domains of Cas12i that are likely involved in heteroduplex recognition. e, Substrate cleavage assay using wild-type Cas12i and Cas12i with each of the three loops shown in d deleted or mutated. The results shown are representative of three experiments. f, Sequence alignment of the lid region among Cas12 orthologs using ClustalW program (Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2, Unit 2 3, doi:10.1002/0471250953.bi0203s00 (2002).). Uncropped image for panel e is available as source data online.

Source data

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, Z., Xiao, R. et al. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat Struct Mol Biol 27, 1069–1076 (2020). https://doi.org/10.1038/s41594-020-0499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0499-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing