Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gating of human TRPV3 in a lipid bilayer

Abstract

The transient receptor potential cation channel subfamily V member 3 (TRPV3) channel plays a critical role in skin physiology, and mutations in TRPV3 result in the development of a congenital skin disorder, Olmsted syndrome. Here we describe multiple cryo-electron microscopy structures of human TRPV3 reconstituted into lipid nanodiscs, representing distinct functional states during the gating cycle. The ligand-free, closed conformation reveals well-ordered lipids interacting with the channel and two physical constrictions along the ion-conduction pore involving both the extracellular selectivity filter and intracellular helix bundle crossing. Both the selectivity filter and bundle crossing expand upon activation, accompanied by substantial structural rearrangements at the cytoplasmic intersubunit interface. Transition to the inactivated state involves a secondary structure change of the pore-lining helix, which contains a π-helical segment in the closed and open conformations, but becomes entirely α-helical upon inactivation. Together with electrophysiological characterization, structures of TRPV3 in a lipid membrane environment provide unique insights into channel activation and inactivation mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of human TRPV3 in lipid nanodiscs.
Fig. 2: Two physical constrictions along the ion pore of TRPV3 in a lipid bilayer.
Fig. 3: TRPV3 opening in a lipid bilayer.
Fig. 4: Conformational changes upon channel opening.
Fig. 5: Structure of an inactivated conformation.
Fig. 6: 2-APB binding site.

Similar content being viewed by others

Data availability

The cryo-EM maps of the wild-type human TRPV3 and K169A have been deposited in the Electron Microscopy Data Bank with accession codes EMD-20917 (apo TRPV3), EMD-20918 (apo K169A), EMD-20919 (K169A with 3 min exposure to 2-APB) and EMD-20920 (K169A in the presence of 2-APB). Atomic coordinates have been deposited in the Protein Data Bank with accession codes 6UW4 (apo TRPV3), 6UW6 (apo K169A), 6UW8 (K169A with 3 min exposure to 2-APB) and 6UW9 (K169A in the presence of 2-APB).

References

  1. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29, 355–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, X. et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141, 331–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bang, S., Yoo, S., Yang, T. J., Cho, H. & Hwang, S. W. Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J. Biol. Chem. 285, 19362–19371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyamoto, T., Petrus, M. J., Dubin, A. E. & Patapoutian, A. TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat. Commun. 2, 369 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Lin, Z. et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am. J. Hum. Genet. 90, 558–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ni, C. et al. A novel mutation in TRPV3 gene causes atypical familial Olmsted syndrome. Sci. Rep. 6, 21815 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, H. Z. et al. 2-Aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem. 279, 35741–35748 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Chung, M. K., Lee, H., Mizuno, A., Suzuki, M. & Caterina, M. J. 2-Aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci. 24, 5177–5182 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao, R. et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 283, 6162–6174 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Phelps, C. B., Wang, R. R., Choo, S. S. & Gaudet, R. Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J. Biol. Chem. 285, 731–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Singh, A. K., McGoldrick, L. L. & Sobolevsky, A. I. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat. Struct. Mol. Biol. 25, 805–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zubcevic, L. et al. Conformational ensemble of the human TRPV3 ion channel. Nat. Commun. 9, 4773 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zubcevic, L., Borschel, W. F., Hsu, A. L., Borgnia, M. J. & Lee, S.-Y. Regulatory switch at the cytoplasmic interface controls TRPV channel gating. Elife 8, e47746 (2019).

  21. Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng, Z. et al. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat. Struct. Mol. Biol. 25, 252–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grandl, J. et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat. Neurosci. 13, 708–714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui, Y. et al. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. J. Gen. Physiol. 139, 273–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bohlen, C. J. et al. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141, 834–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Myers, B. R., Bohlen, C. J. & Julius, D. A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron 58, 362–373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, F., Cui, Y., Wang, K. & Zheng, J. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl Acad. Sci. USA 107, 7083–7088 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jara-Oseguera, A., Huffer, K. E. & Swartz, K. J. The ion selectivity filter is not an activation gate in TRPV1-3 channels. Elife 8, e51212 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nat. Neurosci. 11, 1007–1013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, S. E., Patapoutian, A. & Grandl, J. Single residues in the outer pore of TRPV1 and TRPV3 have temperature-dependent conformations. PLoS One 8, e59593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hille, B., Dickson, E. J., Kruse, M., Vivas, O. & Suh, B. C. Phosphoinositides regulate ion channels. Biochim. Biophys. Acta 1851, 844–856 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Denisov, I. G. & Sligar, S. G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23, 481–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dang, S. et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552, 426–429 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kern, D. M., Oh, S., Hite, R. K. & Brohawn, S. G. Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs. Elife 8, e42636 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Doerner, J. F., Hatt, H. & Ramsey, I. S. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 137, 271–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bang, S., Yoo, S., Yang, T. J., Cho, H. & Hwang, S. 17(R)-resolvin D1 specifically inhibits transient receptor potential ion channel vanilloid 3 leading to peripheral antinociception. Br. J. Pharmacol. 165, 683–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu, H. Z. et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell. Physiol. 208, 201–212 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hughes, T. E. T. et al. Structural insights on TRPV5 gating by endogenous modulators. Nat. Commun. 9, 4198 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Saotome, K., Singh, A. K., Yelshanskaya, M. V. & Sobolevsky, A. I. Crystal structure of the epithelial calcium channel TRPV6. Nature 534, 506–511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McGoldrick, L. L. et al. Opening of the human epithelial calcium channel TRPV6. Nature 553, 233–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Dang, S. et al. Structural insight into TRPV5 channel function and modulation. Proc. Natl Acad. Sci. USA 116, 8869–8878 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung, M. K., Güler, A. D. & Caterina, M. J. Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J. Biol. Chem. 280, 15928–15941 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Luo, J., Stewart, R., Berdeaux, R. & Hu, H. Tonic inhibition of TRPV3 by Mg2+ in mouse epidermal keratinocytes. J. Invest. Dermatol. 132, 2158–2165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, W. et al. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J. Biol. Chem. 287, 7279–7288 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Palovcak, E., Delemotte, L., Klein, M. L. & Carnevale, V. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels. J. Gen. Physiol. 146, 37–50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hinman, A. A., Chuang, H. H. A. B., Bautista, D. M. A. & Julius, D. A. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, M., Jiang, J. & Yue, L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J. Gen. Physiol. 127, 525–537 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lievremont, J. P., Bird, G. S. & Putney, J. W. Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol. Pharmacol. 68, 758–762 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Togashi, K., Inada, H. & Tominaga, M. Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br. J. Pharmacol. 153, 1324–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Singh, A. K., Saotome, K., McGoldrick, L. L. & Sobolevsky, A. I. Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat. Commun. 9, 2465 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu, B., Yao, J., Zhu, M. X. & Qin, F. Hysteresis of gating underlines sensitization of TRPV3 channels. J. Gen. Physiol. 138, 509–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, F., Vu, S., Yarov-Yarovoy, V. & Zheng, J. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc. Natl Acad. Sci. USA 113, E3657–E3666 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, F. et al. Engineering vanilloid-sensitivity into the rat TRPV2 channel. Elife 5, e16409 (2016).

  60. Zhang, F., Swartz, K. J. & Jara-Oseguera, A. Conserved allosteric pathways for activation of TRPV3 revealed through engineering vanilloid-sensitivity. Elife 8, e42756 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

  66. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Schnorf, M., Potrykus, I. & Neuhaus, G. Microinjection technique: routine system for characterization of microcapillaries by bubble pressure measurement. Exp. Cell. Res. 210, 260–267 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant R01NS099341 and the Mallinckrodt Foundation grant (to P.Y.), and by the McDonnell Center for Cellular and Molecular Neurobiology Postdoctoral Fellowship (to Z.D.). M.R. and J.A.J.F. are supported by the Washington University Center for Cellular Imaging, which is funded in part by Washington University School of Medicine through the Precision Medicine Initiative, the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish Hospital (3770).

Author information

Authors and Affiliations

Authors

Contributions

Z.D. performed biochemical preparations, cryo-EM experiments, structural determination and analysis. G.M. conducted electrophysiology experiments. M.R. and J.A.J.F. performed cryo-EM data acquisition in conjunction with Z.D. Z.X. and H.H. helped with functional studies. P.Y. designed and supervised the project. Z.D., G.M. and P.Y. analyzed the results and prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Peng Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Peer review information: Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reconstitution of human TRPV3 into lipid nanodiscs.

a, Size-exclusion chromatography of TRPV3 reconstituted into lipid nanodiscs made of soybean polar lipids and the scaffold protein MSP2N2 (left panel). Peaks indicating the void, the TRPV3-embedded nanodiscs, the empty nanodiscs, and GFP were labeled. The peak fraction corresponding to TRPV3 channels in nanodiscs was shown on SDS-PAGE (right panel). b, The collected TRPV3-nanodisc fraction ran as a monodisperse peak on size-exclusion chromatography. c, Representative micrograph for negative stain and reference-free 2D class averages indicating a tetrameric channel inserted into nanodiscs (right).

Extended Data Fig. 2 Cryo-EM reconstruction of the wild-type full-length human TRPV3 in lipid nanodiscs.

a, Flowchart of cryo-EM data processing. b, Fourier shell correlation before and after post-processing in RELION2. c, Fourier shell correlation between the refined model and the full map. d, Angular distribution plot of particles used for final reconstruction. e, Cryo-EM density map colored by local resolution. f, Representative cryo-EM density shown as blue mesh contoured at 5.0 σ.

Extended Data Fig. 3 Channel-lipid interactions in human TRPV3.

a, Lipid densities at sites 1, 2, and 3 located in the proximity of the outer pore region. Lipids are putatively modeled as phosphatidylethanolamine to illustrate interactions with the channel. Channel subunits are uniquely colored. Polar and charged residues potentially interacting with lipid head groups are highlighted in stick representation. b, Lipid density at site 4 in the intracellular cavity of the S1-S4 domain. c, Lipid density between the S4-S5 linkers of two neighboring subunits. The putative lipid densities are shown as orange mesh contoured at 3.5 σ.

Extended Data Fig. 4 Cryo-EM reconstruction of the human TRPV3 K169A variant in lipid nanodiscs.

a, Flowchart of cryo-EM data processing. Two major conformations, presumably representing the open (~69%) and inactivated states (31%), were refined to resolutions of 3.66 Å and 4.4 Å, respectively. b, Fourier shell correlation before and after post-processing in RELION3 for the open state. c, Fourier shell correlation between the refined model and the full map for the open state. d, Angular distribution plot of particles used for final reconstruction for the open state. e, Cryo-EM density map colored by local resolution for the open state. f, Representative cryo-EM density shown as blue mesh contoured at 5.0 σ.

Extended Data Fig. 5 Opening of TRPV1.

a, b, Orthogonal views of the closed (PDB 3J5P) and open (PDB 3J5Q) structures of TRPV1.

Extended Data Fig. 6 Lipid in the analogous vanilloid binding pocket in TRPV3.

a,b, Putative lipid density shown as orange mesh contoured at 4.5 σ in the analogous vanilloid binding pocket in the closed (a) and open (b) conformations.

Extended Data Fig. 7 Cryo-EM reconstruction of K169A accompanied by 2-APB in an inactivated state.

a, Flowchart of cryo-EM data processing. b, Fourier shell correlation before and after post-processing in RELION3. c, Fourier shell correlation between the refined model and the full map. d, Angular distribution plot of particles used for final reconstruction. e, Cryo-EM density map colored by local resolution. f, Representative cryo-EM density shown as blue mesh contoured at 5.0 σ.

Extended Data Fig. 8 Cryo-EM reconstruction of K169A briefly exposed to 2-APB for 3 minutes in an open conformation.

a, Flowchart of cryo-EM data processing. b, Fourier shell correlation before and after post-processing in RELION3. c, Fourier shell correlation between the refined model and the full map. d, Angular distribution plot of particles used for final reconstruction. e, Cryo-EM density map colored by local resolution. f, Representative cryo-EM density shown as blue mesh contoured at 5.0 σ.

Extended Data Fig. 9 TRPV3 pore structures in distinct functional states.

ad, The pore structures in the apo closed wild-type TRPV3 channel (a), the apo open K169 mutant (b), the 2-APB-bound open K169A (c), and 2-APB-bound inactivated states (d). Also shown are cryo-EM densities of the normalized cryo-EM maps contoured at 6.0 σ.

Extended Data Fig. 10 Mapping the pore mutations enabling TRPV3-6M activation by RTX.

Two views of the closed TRPV3 pore, highlighting the pore mutations that render TRPV3-6M sensitive to RTX activation. These mutations, including V587L, A606V, F625L, F656I, and F666Y, are shown as stick representation and colored in green.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Maksaev, G., Rau, M. et al. Gating of human TRPV3 in a lipid bilayer. Nat Struct Mol Biol 27, 635–644 (2020). https://doi.org/10.1038/s41594-020-0428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0428-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing