Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of the cohesin ATPase elucidates the mechanism of SMC–kleisin ring opening

Abstract

Genome regulation requires control of chromosome organization by SMC–kleisin complexes. The cohesin complex contains the Smc1 and Smc3 subunits that associate with the kleisin Scc1 to form a ring-shaped complex that can topologically engage chromatin to regulate chromatin structure. Release from chromatin involves opening of the ring at the Smc3–Scc1 interface in a reaction that is controlled by acetylation and engagement of the Smc ATPase head domains. To understand the underlying molecular mechanisms, we have determined the 3.2-Å resolution cryo-electron microscopy structure of the ATPγS-bound, heterotrimeric cohesin ATPase head module and the 2.1-Å resolution crystal structure of a nucleotide-free Smc1–Scc1 subcomplex from Saccharomyces cerevisiae and Chaetomium thermophilium. We found that ATP-binding and Smc1–Smc3 heterodimerization promote conformational changes within the ATPase that are transmitted to the Smc coiled-coil domains. Remodeling of the coiled-coil domain of Smc3 abrogates the binding surface for Scc1, thus leading to ring opening at the Smc3–Scc1 interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of the cohesin ATPase head module.
Fig. 2: Conformational changes in the engaged cohesin head module lead to remodeling of the NScc1–Smc3 interface.
Fig. 3: The Smc3 and Smc1 ATPase sites are structurally distinct.

Similar content being viewed by others

Data availability

Cryo-EM reconstructions are deposited in the Electron Microscopy Data Bank (EMDB accession number EMD-4614). The Smc3–Scc1–Smc1 and CtSmc1–CScc1 structures are deposited in the Protein Data Bank (PDB accession numbers 6QPW and 6QPQ, respectively). Source Data for Fig. 2g and Extended Data Fig. 1c,e are available with the paper online.

References

  1. Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. 53, 445–482 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Hassler, M., Shaltiel, I. A. & Haering, C. H. Towards a unified model of SMC complex function. Curr. Biol. 28, R1266–R1281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirano, T. Condensin-based chromosome organization from bacteria to vertebrates. Cell 164, 847–857 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 338–1345 (2019).

    Article  CAS  Google Scholar 

  6. Nasmyth, K. Cohesin: a catenase with separate entry and exit gates? Nat. Cell Biol. 13, 1170–1177 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Haering, C. H. et al. Structure and stability of cohesin’s Smc1–kleisin interaction. Mol. Cell 15, 951–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Gligoris, T. G. et al. Closing the cohesin ring: structure and function of its Smc3–kleisin interface. Science 346, 963–967 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinshaw, S. M., Makrantoni, V., Harrison, S. C. & Marston, A. L. The kinetochore receptor for the cohesin loading complex. Cell 171, 72–84.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petela, N. J. et al. Scc2 is a potent activator of cohesin’s ATPase that promotes loading by binding Scc1 without Pds5. Mol. Cell 70, 1134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murayama, Y. & Uhlmann, F. Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505, 367–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Munoz, S., Minamino, M., Casas-Delucchi, C. S., Patel, H. & Uhlmann, F. A role for chromatin remodeling in cohesin loading onto chromosomes. Mol. Cell 74, 664–673.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, K. L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Rowland, B. D. et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell 33, 763–774 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Beckouet, F. et al. Releasing activity disengages cohesin’s Smc3/Scc1 interface in a process blocked by acetylation. Mol. Cell 61, 563–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gruber, S. et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127, 523–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Srinivasan, M. et al. The cohesin ring uses its hinge to organize DNA using non-topological as well as topological mechanisms. Cell 173, 1508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buheitel, J. & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3–Scc1 gate. EMBO J. 32, 666–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eichinger, C. S., Kurze, A., Oliveira, R. A. & Nasmyth, K. Disengaging the Smc3/kleisin interface releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO J. 32, 656–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hopfner, K. P. & Tainer, J. A. Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13, 249–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Locher, K. P. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Elbatsh, A. M. O. et al. Cohesin releases DNA through asymmetric ATPase-driven ring opening. Mol. Cell 61, 575–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huber, R. G. et al. Impairing cohesin Smc1/3 head engagement compensates for the lack of Eco1 function. Structure 24, 1991–1999 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Murayama, Y. & Uhlmann, F. DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163, 1628–1640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu, B. et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Ben-Shahar, T. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321, 563–566 (2008).

    Article  CAS  Google Scholar 

  28. Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321, 566–569 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Guacci, V. et al. A novel mechanism for the establishment of sister chromatid cohesion by the ECO1 acetyltransferase. Mol. Biol. Cell 26, 117–133 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ladurner, R. et al. Cohesin’s ATPase activity couples cohesin loading onto DNA with Smc3 acetylation. Curr. Biol. 24, 2228–2237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Camdere, G., Guacci, V., Stricklin, J. & Koshland, D. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering. Elife 4, e11315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hassler, M. et al. Structural Basis of an Asymmetric Condensin ATPase Cycle. Mol. Cell 74, 1175–1188.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huis in ‘t Veld, P. J. et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346, 968–972 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Soh, Y. M. et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57, 290–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kulemzina, I. et al. A reversible association between Smc coiled coils is regulated by lysine acetylation and is required for cohesin association with the DNA. Mol. Cell 63, 1044–1054 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Chao, W. C. H. et al. Structure of the cohesin loader Scc2. Nat. Commun. 8, 13952 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diebold-Durand, M. L. et al. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell 67, 334–347.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chapard, C., Jones, R., van Oepen, T., Scheinost, J. C. & Nasmyth, K. Sister DNA entrapment between juxtaposed Smc heads and kleisin of the cohesin complex. Mol. Cell 75, 224–237.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vazquez Nunez, R., Ruiz Avila, L. B. & Gruber, S. Transient DNA occupancy of the SMC interarm space in prokaryotic condensin. Mol. Cell 75, 209–223.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burmann, F. et al. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams, G. J. et al. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18, 423–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Bowler, M. W. et al. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. J. Synchrotron Radiat. 22, 1540–1547 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Svensson, O., Malbet-Monaco, S., Popov, A., Nurizzo, D. & Bowler, M. W. Fully automatic characterization and data collection from crystals of biological macromolecules. Acta Crystallogr. D. Struct. Biol. 71, 1757–1767 (2015).

    Article  CAS  Google Scholar 

  46. Svensson, O., Gilski, M., Nurizzo, D. & Bowler, M. W. Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1. Acta Crystallogr. D. Struct. Biol. 74, 433–440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D. Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. Biol. Crystallogr. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scheres, S. H. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Struct. Biol. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. The PyMOL Molecular Graphics System, v.2.0 (Schrodinger LLC, 2015).

Download references

Acknowledgements

We thank M. Hons and M. Karuppasamy (European Molecular Biology Laboratory (EMBL)) for training K.W.M. in cryo-EM, M.W. Bowler (EMBL) for X-ray data collection, S. Cusack (EMBL) and D. Barford (MRC-LMB) for their support, and P.V. Sauer (University of California, Berkeley) for critical reading of the manuscript. This work was funded by EMBL.

Author information

Authors and Affiliations

Authors

Contributions

K.W.M., Y.L. and D.P. conceived the study. K.W.M. and Y.L. designed c-link. K.W.M. and D.P. devised the crosslinking strategy. Y.L. crystallized CtSmc1–CScc1. K.W.M. and F.W. collected cryo-EM data. K.W.M. processed cryo-EM data. Molecular models were built and refined by K.W.M. and D.P. K.W.M. and D.P. wrote the manuscript with input from Y.L. and F.W.

Corresponding authors

Correspondence to Kyle W. Muir or Daniel Panne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cohesin domain organization and purification of c-link complexes.

a, Domain organization and cartoon depiction of the cohesin complex. b, SDS-PAGE analysis of a representative c-link purification. Bands corresponding to each subunit are indicated. c, Size-exclusion chromatography analysis of c-link prior to (orange) and following 3C-mediated cleavage (yellow) of the NScc1–CtCSmc1 linker. Elution volume of molecular weight standards are shown. d, SDS-PAGE analysis of indicated fractions corresponding c, (c-link left of marker; 3C-treated c-link to the right). e, ATPase assays of wild-type (Wt) and Walker B (EQ) mutant c-link. A single experiment was performed at the indicated protein concentration. Data for the graphs in c and e are available as source data.

Source data

Extended Data Fig. 2 Cryo-EM data processing and validation.

a, Following initial 2D classification, several iterations of 3D classification were conducted. Classes are presented as 3D volumes. Percentages of particles sorted into each class are displayed below. The selected final 3D class is boxed, and was proceeded by a further round of 2D classification prior to masked global consensus refinement. b, A representative micrograph is shown. c, Angular distribution plot of final 3D consensus refinement. d, Fourier shell correlation plot. Final overall resolution is 3.2 Å (when FSC=0.143). e, Local resolution of the EM density map (Å) as computed by ResMap. f, EM density and modelled residues corresponding to catalytic motifs of the CtSmc1 ATPase domain, and the coiled-coils (RMSD 2.5). g, EM density and modelled residues corresponding to catalytic motifs of the Smc3 ATPase domain, and the coiled-coils (RMSD 2.5).

Extended Data Fig. 3 Comparative structural analysis of the cohesin ATPase.

a, Structural alignment-based superposition of the RecA N-lobes of apo CtSmc1–CScc1 (red) and ATPγS-bound ySmc1–CScc1 complex (grey; PDB code 1W1W). Cα root-mean-square deviation [RMSD] = 0.98 Å. b, The Smc3–NScc1 ATPγS complex (PDB code 4UX3). c, Relative motions of α-helices within the ctSmc1 ATPase upon ATPγS binding and head heterodimerization. d, Relative motions of α-helices within the ySmc3 ATPase upon ATPγS binding and head heterodimerization. e, The cross-links are positioned in loops between secondary structural elements. f, Structural details around the cross-linked disulfides. Smc3 N1204 and CtSmc1 L1160 are closely apposed in the modeled heterodimer (grey). Replacement of these residues by cysteine allows cross-linking without major distortions in the Smc heterodimer. The cystine disulfide bonds are indicated in yellow.

Extended Data Fig. 4 Nucleotide-induced conformational changes in SMC ATPases.

a, Structural alignment based on ATPγS-bound CtSMC1, the nucleotide-free form of Bacillus subtilis (Bs) SMC and the ATPγS-bound form of Geobacillus stearothermophilus (Gs) SMC. b, Nucleotide free (grey) and bound (green) Pyrococccus furiosis (Pf) Rad50 conformations. Nucleotide binding induces an ~35 °C-lobe rotation. c, Nucleotide free (teal) form of Chaetomium thermophilium (Ct) Smc2 and ATPγS-bound form of CtSmc1 (red). d, Nucleotide free (blue) form of CtSmc4 and ATPγS-bound form of CtSmc1 (red). All structural superpositions were done using the SMC N-lobe.

Supplementary information

Reporting Summary

Supplementary Video 1

Conformational changes of Smc1–Smc3 on binding of ATPγS and heterodimerization. Smc1 in the absence of nucleotide and Smc3 bound to ATPγS and NScc1 (PDB 4UX3) were superimposed and movies generated by morphing between states in PyMOL56. The movie shows how ATPγS binding and Smc heterodimerization lead to remodeling of Smc1 (red), Smc3 (blue) and NScc1 (green) displacement on Smc head engagement. ATPγS is shown as sticks and Mg2+ as gray spheres. For clarity, CScc1 is omitted

Supplementary Video 2

Conformational changes in the Smc1–Smc3 heterodimerization interface. Structures were superimposed and the movie generated as in Supplementary Video 1. The movie shows how ATPase head engagement results in remodeling of ATPase site 2. The Smc3 loop connecting the signature helix α11 and α7 moves toward the signature-coupling helix α4, thus apparently contributing to its displacement and Smc3 coiled coil rearrangement. ATPγS is shown as sticks

Source data

Source Data Fig. 2

Uncropped gel images Fig. 2g

Source Data Fig. 2

Source Data for the graph in Fig. 2g

Source Data Extended Data Fig. 1

Source Data for the graph in Extended Data Fig. 1e and Extended Data Fig. 1c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muir, K.W., Li, Y., Weis, F. et al. The structure of the cohesin ATPase elucidates the mechanism of SMC–kleisin ring opening. Nat Struct Mol Biol 27, 233–239 (2020). https://doi.org/10.1038/s41594-020-0379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0379-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing