Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease


The human leukocyte antigen (HLA) locus is strongly associated with T cell-mediated autoimmune disorders. HLA-DQ2.5-mediated celiac disease (CeD) is triggered by the ingestion of gluten, although the relative roles of genetic and environmental risk factors in CeD is unclear. Here we identify microbially derived mimics of gliadin epitopes and a parental bacterial protein that is naturally processed by antigen-presenting cells and activated gliadin reactive HLA-DQ2.5-restricted T cells derived from CeD patients. Crystal structures of T cell receptors in complex with HLA-DQ2.5 bound to two distinct bacterial peptides demonstrate that molecular mimicry underpins cross-reactivity toward the gliadin epitopes. Accordingly, gliadin reactive T cells involved in CeD pathogenesis cross-react with ubiquitous bacterial peptides, thereby suggesting microbial exposure as a potential environmental factor in CeD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Identification of microbial mimic peptides for CeD epitopes using TCR structural and functional data.
Fig. 2: Bacterial mimic peptides and parent protein potently stimulate CeD patient-derived T cells.
Fig. 3: HLA-DQ2+ APCs process PFSGDS and present antigenic mimic peptide, and patient-derived T cells proliferate in response to bacterial mimic peptides or PFSGDS protein.
Fig. 4: T cell cross-reactivity following gluten challenge.
Fig. 5: Surface plasmon resonance affinity measurements.
Fig. 6: Structural basis for the recognition of HLA-DQ2.5–P.fluor-α1a.
Fig. 7: Molecular mimicry drives cross-recognition of bacterial epitope HLA-DQ2.5–P.aerug-α2a.

Data availability

The structure models and structure factors for the complexes HLA-DQ2.5–P.fluor-α1a, LS2.8/3.15 TCR–HLA-DQ2.5–P.fluor-α1a, and JR5.1 TCR–HLA-DQ2.5–P.aeru-α2a have been deposited at the wwPDB under accession codes PDB 6U3M, 6U3N, and 6U3O, respectively. The source data for Supplementary Figs 1 and 2 are available online.


  1. 1.

    Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu Rev. Genomics Hum. Genet 14, 301–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    CAS  PubMed  Google Scholar 

  3. 3.

    Pollard, K. M., Hultman, P. & Kono, D. H. Toxicology of autoimmune diseases. Chem. Res. Toxicol. 23, 455–466 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Marino, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Li, B., Selmi, C., Tang, R., Gershwin, M. E. & Ma, X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol. Immunol. 15, 595–609 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sollid, L. M. & Jabri, B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol. 13, 294–302 (2013).

    CAS  PubMed  Google Scholar 

  7. 7.

    Sollid, L. M., Qiao, S. W., Anderson, R. P., Gianfrani, C. & Koning, F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64, 455–460 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tye-Din, J. A. et al. Comprehensive, quantitative mapping of T cell epitopes in gluten in celiac disease. Sci. Transl. Med. 2, 41ra51 (2010).

    PubMed  Google Scholar 

  9. 9.

    Kim, C. Y., Quarsten, H., Bergseng, E., Khosla, C. & Sollid, L. M. Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc. Natl Acad. Sci. USA 101, 4175–4179 (2004).

    CAS  PubMed  Google Scholar 

  10. 10.

    Henderson, K. N. et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27, 23–34 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Molberg, O. et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4, 713–717 (1998).

    CAS  PubMed  Google Scholar 

  12. 12.

    Qiao, S. W. et al. Posttranslational modification of gluten shapes TCR usage in celiac disease. J. Immunol. 187, 3064–3071 (2011).

    CAS  PubMed  Google Scholar 

  13. 13.

    Broughton, S. E. et al. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 37, 611–621 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Petersen, J. et al. T-cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol. 21, 480–488 (2014).

    CAS  PubMed  Google Scholar 

  15. 15.

    Qiao, S. W., Christophersen, A., Lundin, K. E. & Sollid, L. M. Biased usage and preferred pairing of α- and β-chains of TCRs specific for an immunodominant gluten epitope in coeliac disease. Int. Immunol. 26, 13–19 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Vriezinga, S. L. et al. Randomized feeding intervention in infants at high risk for celiac disease. N. Engl. J. Med. 371, 1304–1315 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Marild, K., Kahrs, C. R., Tapia, G., Stene, L. C. & Stordal, K. Infections and risk of celiac disease in childhood: a prospective nationwide cohort study. Am. J. Gastroenterol. 110, 1475–1484 (2015).

    PubMed  Google Scholar 

  18. 18.

    Viitasalo, L. et al. Early microbial markers of celiac disease. J. Clin. Gastroenterol. 48, 620–624 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ludvigsson, J. F. & Murray, J. A. Epidemiology of celiac disease. Gastroenterol. Clin. North Am. 48, 1–18 (2019).

    PubMed  Google Scholar 

  20. 20.

    Caminero, A. & Verdu, E. F. Celiac disease: should we care about microbes? Am. J. Physiol. Gastrointest. Liver Physiol. 317, G161–G170 (2019).

    CAS  PubMed  Google Scholar 

  21. 21.

    Verdu, E. F., Galipeau, H. J. & Jabri, B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 12, 497–506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kagnoff, M. F. et al. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease. Gut 28, 995–1001 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kagnoff, M. F., Austin, R. K., Hubert, J. J., Bernardin, J. E. & Kasarda, D. D. Possible role for a human adenovirus in the pathogenesis of celiac disease. J. Exp. Med. 160, 1544–1557 (1984).

    CAS  PubMed  Google Scholar 

  24. 24.

    Dahal-Koirala, S. et al. Discriminative T-cell receptor recognition of highly homologous HLA-DQ2-bound gluten epitopes. J. Biol. Chem. 294, 941–952 (2019).

    CAS  PubMed  Google Scholar 

  25. 25.

    Purcell, A. W., Ramarathinam, S. H. & Ternette, N. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nat. Protoc. 14, 1687–1707 (2019).

    CAS  PubMed  Google Scholar 

  26. 26.

    Anderson, R. P., Degano, P., Godkin, A. J., Jewell, D. P. & Hill, A. V. S. In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat. Med. 6, 337–342 (2000).

    CAS  PubMed  Google Scholar 

  27. 27.

    Stene, L. C. et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am. J. Gastroenterol. 101, 2333–2340 (2006).

    CAS  PubMed  Google Scholar 

  28. 28.

    Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kahrs, C. R. et al. Enterovirus as trigger of coeliac disease: nested case-control study within prospective birth cohort. Br. Med. J. 364, l231 (2019).

    Google Scholar 

  30. 30.

    Ashorn, S. et al. Elevated serum anti-Saccharomyces cerevisiae, anti-I2 and anti-OmpW antibody levels in patients with suspicion of celiac disease. J. Clin. Immunol. 28, 486–494 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Riddle, M. S., Murray, J. A. & Porter, C. K. The incidence and risk of celiac disease in a healthy US adult population. Am. J. Gastroenterol. 107, 1248–1255 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Riddle, M. S., Murray, J. A., Cash, B. D., Pimentel, M. & Porter, C. K. Pathogen-specific risk of celiac disease following bacterial causes of foodborne illness: a retrospective cohort study. Dig. Dis. Sci. 58, 3242–3245 (2013).

    PubMed  Google Scholar 

  33. 33.

    Sanchez, E., Donat, E., Ribes-Koninckx, C., Fernandez-Murga, M. L. & Sanz, Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ. Microbiol. 79, 5472–5479 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wacklin, P. et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am. J. Gastroenterol. 109, 1933–1941 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Viitasalo, L. et al. Microbial biomarkers in patients with nonresponsive celiac disease. Dig. Dis. Sci. 63, 3434–3441 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    D’Argenio, V. et al. Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients. Am. J. Gastroenterol. 111, 879–890 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Caminero, A. et al. Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity. Gastroenterology 151, 670–683 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Caminero, A. et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 10, 1198 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Dickson, R. P. et al. Cell-associated bacteria in the human lung microbiome. Microbiome 2, 28 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    N’Diaye, A. et al. Substance P and calcitonin gene-related peptide: key regulators of cutaneous microbiota homeostasis. Front. Endocrinol. 8, 15 (2017).

    Google Scholar 

  41. 41.

    Scales, B. S., Dickson, R. P., LiPuma, J. J. & Huffnagle, G. B. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 27, 927–948 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Dalwadi, H., Wei, B., Kronenberg, M., Sutton, C. L. & Braun, J. The Crohna’s disease-associated bacterial protein I2 is a novel enteric T cell superantigen. Immunity 15, 149–158 (2001).

    CAS  PubMed  Google Scholar 

  43. 43.

    Sutton, C. L. et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology 119, 23–31 (2000).

    CAS  PubMed  Google Scholar 

  44. 44.

    Segal, Y. & Shoenfeld, Y. Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol. Immunol. 15, 586–594 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lang, H. L. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    CAS  PubMed  Google Scholar 

  46. 46.

    Cole, D. K. et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Investig. 126, 2191–2204 (2016).

    PubMed  Google Scholar 

  47. 47.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  Google Scholar 

  48. 48.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gras, S. et al. Allelic polymorphism in the T cell receptor and its impact on immune responses. J. Exp. Med. 207, 1555–1567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank the staff at the Australian Synchrotron for assistance with data collection and the staff at the Monash Macromolecular crystallization facility. We thank the CeD volunteers who participated in this study. This work was supported by grants from the National Health and Medical Research Council of Australia (NHMRC, program grant no. APP1113293) and the Australian Research Council (ARC, grant no. CE140100011). F.K. is supported by the collaboration project TIMID (no. LSHM18057-SGF) financed by the PPP allowance made available by Top Sector Life Sciences and Health to Samenwerkende Gezondheidsfondsen (SGF) to stimulate public–private partnerships and co-financing by health foundations that are part of the SGF. A.W.P. is supported by an NHMRC Principal Research Fellowship. J.R. is supported by an ARC Laureate Fellowship.

Author information




J.P., H.H.R., L.C., M.T.T., K.-L.L., Y.K.-W., N.P.C. and M.Y.H. contributed to data generation and analysis. Z.C. and J.M. provided key reagents. R.P.A., A.W.P., J.A.T-D. and F.K. contributed to data analysis and manuscript writing. H.H.R. and J.R. are joint senior and corresponding authors and, with J.P., conceived the study, analyzed data and co-wrote the manuscript.

Corresponding authors

Correspondence to Hugh H. Reid or Jamie Rossjohn.

Ethics declarations

Competing interests

R.P.A. and J.A.T.-D. are inventors of patents owned or licensed by ImmusanT Inc. relating to the diagnostic application of gluten challenge, and use of gluten-derived T cell epitopes for use in therapeutics.

Additional information

Peer review information Inês Chen was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Table 1.

Reporting Summary

Source data

Source Data

Source data Supplementary Fig. 1

Source Data

Source data Supplementary Fig. 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petersen, J., Ciacchi, L., Tran, M.T. et al. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Nat Struct Mol Biol 27, 49–61 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing