Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Myelination-independent functions of oligodendrocyte precursor cells in health and disease

Abstract

Oligodendrocyte precursor cells (OPCs) are a population of tissue-resident glial cells found throughout the CNS, constituting approximately 5% of all CNS cells and persisting from development to adulthood and aging. The canonical role of OPCs is to give rise to myelinating oligodendrocytes. However, additional functions of OPCs beyond this traditional role as precursors have been suggested for a long time. In this Perspective, we provide an overview of the multiple myelination-independent functions that have been described for OPCs in the context of neuron development, angiogenesis, inflammatory response, axon regeneration and their recently discovered roles in neural circuit remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of oligodendrocyte precursor cells.
Fig. 2: Multifunctional oligodendrocyte precursor cells in the healthy and damaged CNS.

Similar content being viewed by others

References

  1. Allen, N. J. & Lyons, D. A. Glia as architects of central nervous system formation and function. Science 362, 181–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simons, M. & Nave, K. -A. Oligodendrocytes: myelination and axonal support. Cold Spring Harb. Perspect. Biol. 8, a020479 (2015).

    Article  PubMed  Google Scholar 

  3. Miller, D. J. et al. Prolonged myelination in human neocortical evolution. Proc. Natl Acad. Sci. USA 109, 16480–16485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mount, C. W. & Monje, M. Wrapped to adapt: experience-dependent myelination. Neuron 95, 743–756 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xin, W. & Chan, J. R. Myelin plasticity: sculpting circuits in learning and memory. Nat. Rev. Neurosci. 21, 682–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Czopka, T., ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dawson, M. R. L., Polito, A., Levine, J. M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell Neurosci. 24, 476–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Kirby, B. B. et al. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9, 1506–1511 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Hughes, E. G., Kang, S. H., Fukaya, M. & Bergles, D. E. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16, 668–676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergles, D. E. & Richardson, W. D. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8, a020453 (2015).

    Article  PubMed  Google Scholar 

  11. Marisca, R. et al. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. Nat. Neurosci. 23, 363–374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maldonado, P. P. & Angulo, M. C. Multiple modes of communication between neurons and oligodendrocyte precursor cells. Neurosci 21, 266–276 (2015).

    CAS  Google Scholar 

  13. Gallo, V., Mangin, J. -M., Kukley, M. & Dietrich, D. Synapses on NG2-expressing progenitors in the brain: multiple functions? J. Physiol. 586, 3767–3781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bergles, D. E., Jabs, R. & Steinhäuser, C. Neuron–glia synapses in the brain. Brain Res. Rev. 63, 130–137 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983). The discovery of what is now called OPC: a must read!

    Article  CAS  PubMed  Google Scholar 

  16. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lepiemme, F. et al. Oligodendrocyte precursors guide interneuron migration by unidirectional contact repulsion. Science 376, eabn6204 (2022). A study demonstrating a role for transient embryonic OPCs in regulating interneuron migration.

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, H. -H. et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351, 379–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marín, O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur. J. Neurosci. 38, 2019–2029 (2013).

    Article  PubMed  Google Scholar 

  20. Yuen, T. J. et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158, 383–396 (2014). This study documents OPC-mediated regulation of angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chavali, M. et al. Wnt-dependent oligodendroglial–endothelial interactions regulate white matter vascularization and attenuate injury. Neuron 108, 1130–1145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Franklin, R. J. M. & ffrench-Constant, C. Regenerating CNS myelin—from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    Article  PubMed  Google Scholar 

  24. Moyon, S. et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J. Neurosci. 35, 4–20 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kang, Z. et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat. Neurosci. 16, 1401–1408 (2013). This publication documents that OPCs are crucial mediators of EAE progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Niu, J. et al. Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat. Neurosci. 22, 709–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meijer, M. et al. Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility. Neuron 110, 1193–1210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwab, M. & Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Morgenstern, D. A., Asher, R. A. & Fawcett, J. W. Chondroitin sulphate proteoglycans in the CNS injury response. Prog. Brain Res. 137, 313–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Tan, A. M., Zhang, W. & Levine, J. M. NG2: a component of the glial scar that inhibits axon growth. J. Anat. 207, 717–725 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rodriguez, J. P. et al. Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J. Neurosci. 34, 10285–10297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tan, A. M., Colletti, M., Rorai, A. T., Skene, J. H. P. & Levine, J. M. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. J. Neurosci. 26, 4729–4739 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petrosyan, H. A. et al. Neutralization of inhibitory molecule NG2 improves synaptic transmission, retrograde transport, and locomotor function after spinal cord injury in adult rats. J. Neurosci. 33, 4032–4043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Filous, A. R. et al. Entrapment via synaptic-like connections between NG2 proteoglycan+ cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal cord injury. J. Neurosci. 34, 16369–16384 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ruthazer, E. S., Li, J. & Cline, H. T. Stabilization of axon branch dynamics by synaptic maturation. J. Neurosci. 26, 3594–3603 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer, M. P. & Smith, S. J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiner, J. A., Jontes, J. D. & Burgess, R. W. Introduction to mechanisms of neural circuit formation. Front. Mol. Neurosci. 6, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Chung, W.-S., Allen, N. J. & Eroglu, C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7, a020370 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schafer, D. P. & Stevens, B. Microglia function in central nervous system development and plasticity. Cold Spring Harb. Perspect. Biol. 7, a020545 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pan, Y. & Monje, M. Activity shapes neural circuit form and function: a historical perspective. J. Neurosci. 40, 944–954 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bergles, D. E., Roberts, J. D. B., Somogyl, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). This seminal study revealed that chemical synapses exist not only between neurons but also between axons and OPCs.

    Article  CAS  PubMed  Google Scholar 

  48. Lin, S. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Lam, M. et al. CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes. Nat. Commun. 13, 5583 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan, L. et al. Oligodendrocyte-lineage cell exocytosis and l-type prostaglandin D synthase promote oligodendrocyte development and myelination. Elife 12, e77441 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fang, L. -P. et al. Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior. Nat. Commun. 13, 1394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goncalves, M. B. et al. Regulation of myelination by exosome associated retinoic acid release from NG2-positive cells. J. Neurosci. 39, 3013–3027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frühbeis, C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte—neuron communication. PLoS Biol. 11, e1001604 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mangin, J. -M. & Gallo, V. The curious case of NG2 cells: transient trend or game changer?. ASN Neuro 3, e00052 (2011). An early forward-looking review on neuron–OPC communication.

    PubMed  PubMed Central  Google Scholar 

  55. Sakry, D. et al. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol. 12, e1001993 (2014). This publication shows that OPCs can directly regulate neuronal function.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Birey, F. et al. Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88, 941–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Timmermann, A. et al. Dysfunction of NG2 glial cells affects neuronal plasticity and behavior. Glia 71, 1481–1501 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Mangin, J. -M., Li, P., Scafidi, J. & Gallo, V. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat. Neurosci. 15, 1192–1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goebbels, S. et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat. Neurosci. 20, 10–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Rungta, R. L., Chaigneau, E., Osmanski, B. -F. & Charpak, S. Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99, 362–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiao, Y., Petrucco, L., Hoodless, L. J., Portugues, R. & Czopka, T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat. Neurosci. 25, 280–284 (2022). This publication unambiguously shows that OPCs fine-tune assembly and function of neural circuits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bollmann, J. H. The zebrafish visual system: from circuits to behavior. Annu. Rev. Vis. Sci. 5, 269–293 (2019).

    Article  PubMed  Google Scholar 

  63. Baier, H. & Wullimann, M. F. Anatomy and function of retinorecipient arborization fields in zebrafish. J. Comp. Neurol. 529, 3454–3476 (2021).

    Article  PubMed  Google Scholar 

  64. Hua, J. Y. & Smith, S. J. Neural activity and the dynamics of central nervous system development. Nat. Neurosci. 7, 327–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Sanes, J. R. & Zipursky, S. L. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell 181, 536–556 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Kölsch, Y. et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 109, 645–662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Almeida, R. G. & Lyons, D. A. On the resemblance of synapse formation and CNS myelination. Neuroscience 276, 98–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Auguste, Y. S. S. et al. Oligodendrocyte precursor cells engulf synapses during circuit remodeling in mice. Nat. Neurosci. 25, 1273–1278 (2022). This article shows that OPCs can phagocytose axonal pre-synapses and that the degree of engulfment by OPCs is altered by sensory experience.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buchanan, J. et al. Oligodendrocyte precursor cells ingest axons in the mouse neocortex. Proc. Natl Acad. Sci. USA 119, e2202580119 (2022). This article presents careful three-dimensional reconstructions of electron microscopic images that reveal the presence of axonal material inside OPCs. Together with ref. 68, this study documents that OPCs also have these roles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goldberg, J. L. et al. An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J. Neurosci. 24, 4989–4999 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duan, Y. et al. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. eLife 3, e04390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Weiss, L. A., Arking, D. E., Gene Discovery Project of Johns Hopkins & the Autism Consortium, Daly, M. J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Viganò, F., Möbius, W., Götz, M. & Dimou, L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci. 16, 1370–1372 (2013).

    Article  PubMed  Google Scholar 

  74. Spitzer, S. O. et al. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101, 459–471 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, Y. et al. NG2 glia protect against prion neurotoxicity by inhibiting prostaglandin E2 signaling. Preprint at BioRxiv, https://doi.org/10.1101/2023.04.04.535590 (2023).

  76. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons. Nat. Neurosci. 23, 771–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Butt, A. M., Hamilton, N., Hubbard, P., Pugh, M. & Ibrahim, M. Synantocytes: the fifth element. J. Anat. 207, 695–706 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nishiyama, A., Komitova, M., Suzuki, R. & Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Dimou, L. & Gallo, V. NG2‐glia and their functions in the central nervous system. Glia 63, 1429–1451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Richardson, W. D., Young, K. M., Tripathi, R. B. & McKenzie, I. NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70, 661–673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nishiyama, A., Boshans, L., Goncalves, C. M., Wegrzyn, J. & Patel, K. D. Lineage, fate, and fate potential of NG2-glia. Brain Res. 1638, 116–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Zawadzka, M. et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6, 578–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Emery, B. & Lu, Q. R. Transcriptional and epigenetic regulation of oligodendrocyte development and myelination in the central nervous system. Cold Spring Harb. Perspect. Biol. 7, a020461 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sock, E. & Wegner, M. Using the lineage determinants Olig2 and Sox10 to explore transcriptional regulation of oligodendrocyte development. Dev. Neurobiol. 81, 892–901 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Almeida and all members of the Czopka group for helpful comments and suggestions on this manuscript. This work was supported by the following grants to T.C.: ERC Starting Grant (714440), CRC870/TP A14 (118803580) from the German Research Foundation (DFG), Wellcome Trust Senior Research Fellowship (224497/Z/21/Z) and Responsive Mode grant (BB/V017012/1) from the Biotechnology and Biological Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Czopka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Akiko Nishiyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Czopka, T. Myelination-independent functions of oligodendrocyte precursor cells in health and disease. Nat Neurosci 26, 1663–1669 (2023). https://doi.org/10.1038/s41593-023-01423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01423-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing