Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic patterning for child psychopathology is distinct from that for adults and implicates fetal cerebellar development

Abstract

Childhood psychiatric symptoms are often diffuse but can coalesce into discrete mental illnesses during late adolescence. We leveraged polygenic scores (PGSs) to parse genomic risk for childhood symptoms and to uncover related neurodevelopmental mechanisms with transcriptomic and neuroimaging data. In independent samples (Adolescent Brain Cognitive Development, Generation R) a narrow cross-disorder neurodevelopmental PGS, reflecting risk for attention deficit hyperactivity disorder, autism, depression and Tourette syndrome, predicted psychiatric symptoms through early adolescence with greater sensitivity than broad cross-disorder PGSs reflecting shared risk across eight psychiatric disorders, the disorder-specific PGS individually or two other narrow cross-disorder (Compulsive, Mood-Psychotic) scores. Neurodevelopmental PGS-associated genes were preferentially expressed in the cerebellum, where their expression peaked prenatally. Further, lower gray matter volumes in cerebellum and functionally coupled cortical regions associated with psychiatric symptoms in mid-childhood. These findings demonstrate that the genetic underpinnings of pediatric psychiatric symptoms differ from those of adult illness, and implicate fetal cerebellar developmental processes that endure through childhood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pearson correlations among dimensional psychopathology measures in ABCD and Generation R cohorts (11 CBCL scales, and PQ-BC distress scores), stratified by sex.
Fig. 2: Prediction of dimensional psychopathology in unrelated young adolescents of European ancestry by disorder-specific and gSEM-derived PGSs.
Fig. 3: Spatial and temporal NDV gene expression.
Fig. 4: Tissue-specific effects of NDV pPGS, based on gene sets with prenatal peak, postnatal peak or continuous gene expression, on dimensional psychopathology.
Fig. 5: Association between cerebellar volumes and dimensional psychopathology.

Similar content being viewed by others

Data availability

All ABCD data are available via the NIMH Data Archive. For instructions on gaining access to ABCD data within this repository, refer to this page: https://nda.nih.gov/nda/access-data-info.html. ABCD data created in the current study can also be downloaded from the NDA (https://doi.org/10.15154/1528597). For access to the Generation R dataset, requests can be sent to datamanagementgenr@erasmusmc.nl. BrainSpan Atlas of the Developing Brain gene expression data are available through their website (https://www.brainspan.org/static/download.html); 1000 Genomes phase 3 data are available through this site: https://www.internationalgenome.org/data-portal/data-collection; and summary statistics from the Psychiatric Genomics Consortium can be downloaded here: https://www.med.unc.edu/pgc/download-results/. GTEx v.8 RNA-seq data can be analyzed through FUMA’s pipeline (https://fuma.ctglab.nl/) and the raw data downloaded here: https://gtexportal.org/home/datasets.

Code availability

Code for generation of polygenic scores, spatiotemporal gene expression analyses, imaging analyses and PGS-psychopathology analyses is available on GitHub (https://github.com/hughesdy/ABCD-NDV-CBC).

References

  1. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderson, J. S., Shade, J., DiBlasi, E., Shabalin, A. A. & Docherty, A. R. Polygenic risk scoring and prediction of mental health outcomes. Curr. Opin. Psychol. 27, 77–81 (2019).

    Article  PubMed  Google Scholar 

  6. Brandon, N. J. & Sawa, A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat. Rev. Neurosci. 12, 707–722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Murray, G. K. et al. Could polygenic risk scores be useful in psychiatry?: A review. JAMA Psychiatry 78, 210–219 (2021).

    Article  PubMed  Google Scholar 

  9. Shaw, D. S. et al. Trajectories and predictors of children’s early-starting conduct problems: child, family, genetic, and intervention effects. Dev. Psychopathol. 31, 1911–1921 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Posner, J., Biezonski, D., Pieper, S. & Duarte, C. S. Genetic studies of mental illness: are children being left behind? J. Am. Acad. Child Adolesc. Psychiatry 60, 672–674 (2021).

    Article  PubMed  Google Scholar 

  11. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Rovira, P. et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology 45, 1617–1626 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reef, J., Diamantopoulou, S., van Meurs, I., Verhulst, F. & van der Ende, J. Child to adult continuities of psychopathology: a 24-year follow-up. Acta Psychiatr. Scand. 120, 230–238 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Feczko, E. et al. The heterogeneity problem: approaches to identify psychiatric subtypes. Trends Cogn. Sci. 23, 584–601 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laceulle, O. M., Vollebergh, W. A. M. & Ormel, J. The structure of psychopathology in adolescence: replication of a general psychopathology factor in the TRAILS study. Clin. Psychol. Sci. 3, 850–860 (2015).

    Article  Google Scholar 

  16. Copeland, W., Shanahan, L., Erkanli, A., Costello, E. J. & Angold, A. Indirect comorbidity in childhood and adolescence. Front. Psychiatry https://doi.org/10.3389/fpsyt.2013.00144 (2013).

  17. Vuijk, P. J. et al. Translating discoveries in attention-deficit/hyperactivity disorder genomics to an outpatient child and adolescent psychiatric cohort. J. Am. Acad. Child Adolesc. Psychiatry 59, 964–977 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jones, H. J. et al. Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry 73, 221–228 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marsman, A. et al. Do current measures of polygenic risk for mental disorders contribute to population variance in mental health? Schizophr. Bull. 46, 1353–1362 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee, P. H., Feng, Y.-C. A. & Smoller, J. W. Pleiotropy and cross-disorder genetics among psychiatric disorders. Biol. Psychiatry 89, 20–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

    Article  PubMed Central  Google Scholar 

  22. Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2019).

    Article  PubMed  Google Scholar 

  23. Steenkamp, L. R. et al. Psychotic experiences and future school performance in childhood: a population-based cohort study. J. Child Psychol. Psychiatry 62, 357–365 (2021).

    Article  PubMed  Google Scholar 

  24. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

  26. Yu, D. et al. Interrogating the genetic determinants of Tourette’s syndrome and other tic disorders through genome-wide association studies. Am. J. Psychiatry 176, 217–227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, P. H. et al. Genetic association of attention-deficit/hyperactivity disorder and major depression with suicidal ideation and attempts in children: the Adolescent Brain Cognitive Development Study. Biol. Psychiatry 92, 236–245 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Akingbuwa, W. A. et al. Genetic associations between childhood psychopathology and adult depression and associated traits in 42998 individuals: a meta-analysis. JAMA Psychiatry 77, 715–728 (2020).

    Article  PubMed  Google Scholar 

  30. Neumann, A. et al. Combined polygenic risk scores of different psychiatric traits predict general and specific psychopathology in childhood. J. Child Psychol. Psychiatry 63, 636–645 (2022).

    Article  PubMed  Google Scholar 

  31. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clark, D. A. et al. The general factor of psychopathology in the Adolescent Brain Cognitive Development (ABCD) Study: a comparison of alternative modeling approaches. Clin. Psychol. Sci. 9, 169–182 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Achenbach, T. M. & Rescorla, L. Manual for the ASEBA School-Age Forms & Profiles: An Integrated System of Multi-Informant Assessment (ASEBA, 2001).

  35. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Carithers, L. J. et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv. Biobank. 13, 311–319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tolosa, A. et al. FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies. BMC Med. Genet. 11, 114 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Han, S., Carass, A., He, Y. & Prince, J. L. Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization. Neuroimage 218, 116819 (2020).

    Article  PubMed  Google Scholar 

  42. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Waszczuk, M. A. et al. General v. specific vulnerabilities: polygenic risk scores and higher-order psychopathology dimensions in the Adolescent Brain Cognitive Development (ABCD) Study. Psychol. Med. 53, 1937–1946 (2021).

    Article  Google Scholar 

  44. Sieradzka, D. et al. Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence? PLoS ONE 9, e94398 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kember, R. L. et al. Polygenic risk of psychiatric disorders exhibits cross-trait associations in electronic health record data from European ancestry individuals. Biol. Psychiatry 89, 236–245 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Bitsko, R. H. et al. Mental health surveillance among children – United States, 2013–2019. MMWR Suppl. 71, 1–42 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rice, F. et al. Characterizing developmental trajectories and the role of neuropsychiatric genetic risk variants in early-onset depression. JAMA Psychiatry 76, 306–313 (2019).

    Article  PubMed  Google Scholar 

  48. Tubbs, J. D., Ding, J., Baum, L. & Sham, P. C. Systemic neuro-dysregulation in depression: evidence from genome-wide association. Eur. Neuropsychopharmacol. 39, 1–18 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Hariri, A. R. The emerging importance of the cerebellum in broad risk for psychopathology. Neuron 102, 17–20 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Kelly, E. et al. Regulation of autism-relevant behaviors by cerebellar–prefrontal cortical circuits. Nat. Neurosci. 23, 1102–1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moberget, T. et al. Cerebellar gray matter volume is associated with cognitive function and psychopathology in adolescence. Biol. Psychiatry 86, 65–75 (2019).

    Article  PubMed  Google Scholar 

  52. Romer, A. L. et al. Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Mol. Psychiatry 23, 1084–1090 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Valera, E. M., Faraone, S. V., Murray, K. E. & Seidman, L. J. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry 61, 1361–1369 (2007).

    Article  PubMed  Google Scholar 

  54. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).

    Article  PubMed  Google Scholar 

  55. Schmahmann, J. D., Weilburg, J. B. & Sherman, J. C. The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum 6, 254–267 (2007).

    Article  PubMed  Google Scholar 

  56. Luking, K. R. et al. Timing and type of early psychopathology symptoms predict longitudinal change in cortical thickness from middle childhood into early adolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 397–405 (2022).

    PubMed  Google Scholar 

  57. Schmahmann, J. D. & Caplan, D. Cognition, emotion and the cerebellum. Brain 129, 290–292 (2006).

    Article  PubMed  Google Scholar 

  58. Khan, A. J. et al. Cerebro-cerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder. Biol. Psychiatry 78, 625–634 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brady, R. O. Jr. et al. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am. J. Psychiatry 176, 512–520 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, S. S., Kloth, A. D. & Badura, A. The cerebellum, sensitive periods, and autism. Neuron 83, 518–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sathyanesan, A. et al. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat. Rev. Neurosci. 20, 298–313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J. & Sanchez-Hernandez, A. A working hypothesis for the role of the cerebellum in impulsivity and compulsivity. Front. Behav. Neurosci. 13, 99 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Szucs, D. & Ioannidis, J. P. Sample size evolution in neuroimaging research: an evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. Neuroimage 221, 117164 (2020).

    Article  PubMed  Google Scholar 

  65. Kozareva, V. et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 598, 214–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jernigan, T. L., Brown, S. A. & ABCD Consortium Coordinators. Introduction. Dev. Cogn. Neurosci. 32, 1–3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Karcher, N. R. et al. Assessment of the Prodromal Questionnaire–Brief Child Version for measurement of self-reported psychoticlike experiences in childhood. JAMA Psychiatry 75, 853–861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Auchter, A. M. et al. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 32, 8–15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  71. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mi, H. et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Mi, H., Muruganujan, A., Casagrande, J. T. & Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J.-E. & Woolfrey, K. M. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Medina-Gomez, C. et al. Challenges in conducting genome-wide association studies in highly admixed multi-ethnic populations: the Generation R Study. Eur. J. Epidemiol. 30, 317–330 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Rosen, A. F. G. et al. Quantitative assessment of structural image quality. Neuroimage 169, 407–418 (2018).

    Article  PubMed  Google Scholar 

  82. Carass, A. et al. Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. Neuroimage 183, 150–172 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Presented in part at the American College of Neuropsychopharmacology 2021 Annual Meeting, December 5–8, San Juan, PR. Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 and follow them over 10 years into early adulthood. The ABCD Study is supported by the National Institutes of Health and additional federal partners under award nos. U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123 and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. We thank the investigators and staff at the ABCD sites and coordinating centers, as well as study participants and their families, for their essential contributions to this work. The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the School of Law and Faculty of Social Sciences at Erasmus University Rotterdam, the Municipal Health Service Rotterdam area, the Rotterdam Homecare Foundation and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. We acknowledge the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. The Generation R website contains details of ongoing data collection: http://generationr.nl/researchers/data-collection/. J.L.R. is supported by grant no. R01MH124694, grant no. R01MH120402 and the Mass General Early Brain Development Initiative; P.H.L. is supported in part by grant nos. R01MH119243, R01MH124694, R01MH116037, R01GM148494 and R01MH120219; A.E.D. is supported by grant no. R01MH120402; J.M.G. is supported by grant no. K02DA052684; C.A.M.C. is supported by the European Union’s Horizon 2020 Research and Innovation Programme (EarlyCause; grant agreement no. 848158), the HorizonEurope Research and Innovation Programme (FAMILY; grant agreement no. 101057529) and the European Research Council (TEMPO; grant agreement no. 101039672); H.T. is supported by an NWO-VICI grant (grant no. NWO-ZonMW: 016. VICI.170.200); and E.C.D. is supported by grant no. R01MH113930.

Author information

Authors and Affiliations

Authors

Contributions

D.E.H., K.K., M.L., C.E.H., K.F.D., P.H.L. and J.L.R. performed genomic data processing and analysis. D.E.H., K.K., S.E., O.M.B., C.E.H. and J.L.R. performed neuroimaging preprocessing and data analysis. D.E.H., K.K., S.E., M.L., O.M.B., P.H.L. and J.L.R. performed behavioral/clinical data curation, processing and analysis. D.E.H., K.K., S.E., M.L., P.H.L. and J.L.R. prepared the manuscript. D.E.H., K.K., S.E., M.L., O.M.B., C.E.H., K.F.D., A.E.D., E.C.D., H.E., J.M.G., D.J.H., E.M.V., J.W.S., C.A.M.C., H.T., P.H.L. and J.L.R. contributed to conceptualization of the study and review of the manuscript.

Corresponding author

Correspondence to Joshua L. Roffman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Sandra Sanchez-Roige, Theodore Satterthwaite and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Pearson correlations among dimensional psychopathology measures in ABCD genotyped subjects only.

(a, b) correlation matrix of psychopathology in genotyped males (top right of matrices) and females (bottom left of matrices) at ages 9- 10 (n = 4,459; A) and 11–12 (n = 3,360; B).

Extended Data Fig. 2 Relationship between gSEM-derived PGS and psychopathology in the Generation R cohort.

(a, b) Heatmaps showing uncorrected p-values from linear regression models regressing psychopathology on PGS covarying for age, sex, and top 5 principal components at age 9 (n = 1,850; A) and 13 (n = 1,791; B). Asterisks indicate p < 0.05 after False Discovery Rate correction for 36 comparisons (3 PGS x 12 measures of psychopathology). (c, d) Variance in CBCL Total accounted for by each gSEM-derived PGS. Uncorrected p-values (shown within the figure in black text near the y-max) represent the significance of the R2 change after adding NDV scores to base linear regression models including the respective PGS while covarying for age, sex, and top 5 principal components (Pt =1). All regressions represented are two-sided.

Extended Data Fig. 3 Odds of clinical-range psychopathology (CBCL Total score ≥64) comparing the top to the bottom quintiles of PGS.

Red represents odds of clinical-range psychopathology scores at baseline (age 9–10; n = 4,462). Blue represents odds of clinical-range psychopathology scores at year 2 (age 11–12) but not baseline (age 9–10; n = 3,152). Linear mixed effects regressions (two-sided) are adjusted for age, sex, and the top 5 genetic PCs as fixed effects, and site as a random effect. Points represent estimated odds ratios and error bars indicate 95% confidence intervals around those estimates.

Extended Data Fig. 4 Regional gene expression patterns across the lifespan.

Depicted are expression patterns of 12 of the most significant NDV genes (q < 0.009) using gene expression data from BrainSpan. Each plotted line represents expression across the lifetime within 1 of 6 regions (one color per region; black represents expression in the cerebellum). Vertical black line represents the delineation between prenatal and postnatal timepoints. Abbreviations: AMY, amygdala; CBC, cerebellar cortex; HP, hippocampus; MD, mediodorsal thalamus; NCX, neocortex; STR, striatum. (a, SORCS3; b, DUSP6; c, SEMA6D; d, CUBN; e, CCDC71; f, SLC30A9; g, CCDC36; h, STGAL3; i, KLHDC8B; j, LAMB2; k, FOXP2; l, VSIG10).

Extended Data Fig. 5 Effects of cortical ROI volumes on dimensions of psychopathology.

Linear mixed effects regressions (two-sided) are adjusted for age, sex, intracranial volume, and Euler number as fixed effects, and site, scanner, and family ID as random effects. Warmer colors represent more significant associations. P-values are corrected at the False Discovery Rate (number of comparisons = 272 [68 regions × 4 scales]).

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1–20.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, D.E., Kunitoki, K., Elyounssi, S. et al. Genetic patterning for child psychopathology is distinct from that for adults and implicates fetal cerebellar development. Nat Neurosci 26, 959–969 (2023). https://doi.org/10.1038/s41593-023-01321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-023-01321-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing