Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Causal reductionism and causal structures

Abstract

Causal reductionism is the widespread assumption that there is no room for additional causes once we have accounted for all elementary mechanisms within a system. Due to its intuitive appeal, causal reductionism is prevalent in neuroscience: once all neurons have been caused to fire or not to fire, it seems that causally there is nothing left to be accounted for. Here, we argue that these reductionist intuitions are based on an implicit, unexamined notion of causation that conflates causation with prediction. By means of a simple model organism, we demonstrate that causal reductionism cannot provide a complete and coherent account of ‘what caused what’. To that end, we outline an explicit, operational approach to analyzing causal structures.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Simulated environment and frog behavior.
Fig. 2: Wiring of F3 and F2 frogs and of a pair of F1 frogs.
Fig. 3: Irreducibility analysis for selected mechanisms.

Code availability

The code used for the simulations can be accessed freely at https://github.com/wmayner/pyphi/blob/develop/pyphi/examples.py/.

References

  1. 1.

    Marr, D. Vision: a Computational Investigation into the Human Representation and Processing of Visual Information (MIT Press, 1982).

  2. 2.

    Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 (2017).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Bickle, J. Marr and reductionism. Top. Cogn. Sci. 7, 299–311 (2015).

    PubMed  Article  Google Scholar 

  4. 4.

    Kim, J. Mind in a Physical World: an Essay on the Mind–Body Problem and Mental Causation (MIT press, 1998). Classical philosophical work introducing the causal exclusion argument and employing it in the context of reductive physicalism.

  5. 5.

    Crick, F. The Astonishing Hypothesis (Scribner’s, New York, 1994). An explicit endorsement of causal reductionism in the neuroscience literature. Strictly speaking, Crick was making an ontological statement in addition to a causal statement.

  6. 6.

    Albantakis, L. & Tononi, G. The intrinsic cause–effect power of discrete dynamical systems—from elementary cellular automata to adapting animats. Entropy 17, 5472–5502 (2015).

    Article  Google Scholar 

  7. 7.

    Albantakis, L., Marshall, W., Hoel, E. & Tononi, G. What caused what? a quantitative account of actual causation using dynamical causal networks. Entropy 21, 459 (2019). Formal exposition of causal structure analysis, which is based on an interventional, counterfactual notion of causation. Rather than testing a single counterfactual, causal structure analysis takes into account all possible counterfactuals (system states), allowing for a probabilistic formulation. Further differences with other approaches to actual causation are also discussed, including the distinction between cause and effect, composition, integration and exclusion.

    PubMed Central  Article  PubMed  Google Scholar 

  8. 8.

    Juel, B. E., Comolatti, R., Tononi, G. & Albantakis, L. When is an action caused from within? Quantifying the causal chain leading to actions in simulated agents. in Proceedings of the ALIFE 2019: The 2019 Conference on Artificial Life, 477–484 (MIT Press, 2019).

  9. 9.

    Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. What the frog’s eye tells the frog’s brain. Proc. IRE 47, 1940–1951 (1959).

    Article  Google Scholar 

  10. 10.

    Albantakis, L., Hintze, A., Koch, C., Adami, C. & Tononi, G. Evolution of integrated causal structures in animats exposed to environments of increasing complexity. PLoS Comput. Biol. 10, e1003966 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Albantakis, L. & Tononi, G. Causal composition: structural differences among dynamically equivalent systems. Entropy 21, 989 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  12. 12.

    Oizumi, M., Albantakis, L. & Tononi, G. From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 3.0. PLoS Comput. Biol. 10, e1003588 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: from consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450–461 (2016). The IIT formalism establishes whether a system qualifies as an intrinsic entity—a maximum of intrinsic, structured, specific, irreducible cause–effect power—which is required for a complete account of causation, since only what exists can cause. The IIT analysis of cause–effect power examines potential causes and effects from the intrinsic perspective of a system in a single state (potential causation). By contrast, causal structure analysis examines what actually caused what based on a sequence of states that have happened (actual causation). It should be noted that in this paper we do not consider whether our example systems qualify as intrinsic entities and what that would imply for causation. Instead, we have attempted to illustrate the incoherence of causal reductionism purely within a biological and functional framework.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Haun, A. & Tononi, G. Why does space feel the way it does? Towards a principled account of spatial experience. Entropy 21, 1160 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  15. 15.

    Ay, N. & Polani, D. Information flows in causal networks. Adv. Complex Syst. 11, 17–41 (2008).

    Article  Google Scholar 

  16. 16.

    Janzing, D., Balduzzi, D., Grosse-Wentrup, M. & Schölkopf, B. Quantifying causal influences. Ann. Stat. 41, 2324–2358 (2013).

    Article  Google Scholar 

  17. 17.

    Halpern, J. Y. & Pearl, J. Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56, 843–887 (2005). Halpern and Pearl’s account is currently the most established approach to actual causation. Unlike causal structure analysis, it does not evaluate causal strength. Instead, it aims to provide a set of contingency conditions under which a simple, counterfactual test may be applied to identify variables that are causally relevant for the occurrence of a particular event.

    Article  Google Scholar 

  18. 18.

    Halpern, J. Y. Actual Causality (MIT Press, 2016).

  19. 19.

    Pearl, J. Causality: Models, Reasoning and Inference (Cambridge University Press, 2000). Seminal contribution introducing a causal calculus—a formal framework to evaluate interventions in causal Bayesian networks. The book also offers an overview over methods for ‘causal inference’—how to define a causal model from sparse data. While causal structure analysis makes use of interventions and causal Bayesian networks, it is not concerned with causal inference.

  20. 20.

    Gomez, J. D., Mayner, W. G. P., Beheler-Amass, M., Tononi, G. & Albantakis, L. Computing Integrated Information (Φ) in discrete dynamical systems with multi-valued elements. Entropy 23, 6 (2020).

  21. 21.

    Putnam, H. Psychological Predicates. in Art, Mind and Religion (eds. W. Capitan & D. Merrill) 37–48 (University of Pittsburgh Press, 1967).

  22. 22.

    Sober, E. The multiple realizability argument against reductionism. Philos. Sci. 66, 542–564 (1999).

    Article  Google Scholar 

  23. 23.

    Aizawa, K. Neuroscience and multiple realization: a reply to Bechtel and Mundale. Synthese 167, 493–510 (2009).

    Article  Google Scholar 

  24. 24.

    Aizawa, K. Multiple realizability by compensatory differences. Eur. J. Philos. Sci. 3, 69–86 (2013).

    Article  Google Scholar 

  25. 25.

    Tononi, G., Sporns, O. & Edelman, G. M. Measures of degeneracy and redundancy in biological networks. Proc. Natl Acad. Sci. USA 96, 3257–3262 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Kelso, J. S. Multistability and metastability: understanding dynamic coordination in the brain. Philos. Trans. R. Soc. B Biol. Sci. 367, 906–918 (2012).

    Article  Google Scholar 

  27. 27.

    Brennan, C. & Proekt, A. A quantitative model of conserved macroscopic dynamics predicts future motor commands. Elife 8, e46814 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Hemberger, M., Pammer, L. & Laurent, G. Comparative approaches to cortical microcircuits. Curr. Opin. Neurobiol. 41, 24–30 (2016).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Marder, E., Goeritz, M. L. & Otopalik, A. G. Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms. Curr. Opin. Neurobiol. 31, 156–163 (2015).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    McIntosh, A. R. Contexts and catalysts. Neuroinformatics 2, 175–181 (2004).

    PubMed  Article  Google Scholar 

  31. 31.

    Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci. 1, 125–132 (2000).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456 (2014).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Panzeri, S., Macke, J. H., Gross, J. & Kayser, C. Neural population coding: combining insights from microscopic and mass signals. Trends Cogn. Sci. 19, 162–172 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Frégnac, Y. Big data and the industrialization of neuroscience: a safe roadmap for understanding the brain? Science 358, 470–477 (2017).

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M. & Friston, K. The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Beer, R. D. Beyond control: the dynamics of brain–body–environment interaction in motor systems. Adv. Exp. Med. Biol. 629, 7–24 (2009).

    PubMed  Article  Google Scholar 

  38. 38.

    Norton, J. D. Causation as folk science. Philosophers’ Imprint 3, 1–22 (2003).

  39. 39.

    Hume, D. An Enquiry Concerning Human Understanding (Clarendon Press, 2000). 1748.

    Google Scholar 

  40. 40.

    Russell, B. On the notion of cause. Proc. Aristotelian Soc. 13, 1–26 (1913).

    Article  Google Scholar 

  41. 41.

    Lewis, D. K. On the Plurality of Worlds. (Blackwell, 1986).

    Google Scholar 

  42. 42.

    Chicharro, D. & Ledberg, A. When two become one: the limits of causality analysis of brain dynamics. PLoS ONE 7, e32466 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    James, R. G., Barnett, N. & Crutchfield, J. P. Information flows? a critique of transfer entropies. Phys. Rev. Lett. 116, 238701 (2016).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Selimbeyoglu, A. & Parvizi, J. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front. Hum. Neurosci. 4, 46 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zhang, S. et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Massimini, M., et al. Breakdown of cortical effective connectivity during sleep. Science 309, 2228–2232 (2005).

  47. 47.

    Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Valdes-Sosa, P. A., Roebroeck, A., Daunizeau, J. & Friston, K. Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58, 339–361 (2011).

    PubMed  Article  Google Scholar 

  49. 49.

    Davidson, D. Mental events. In Readings in Philosophy of Psychology (ed. Block, N.) 107–119 (Cambridge, Harvard University Press, 1980).

  50. 50.

    Kim, J. Physicalism, or Something Near Enough (Princeton University Press, 2005).

    Google Scholar 

  51. 51.

    Kim, J. Supervenience and supervenient causation. South. J. Philos. 22, 45–56 (1983).

    Article  Google Scholar 

  52. 52.

    Kelso, J. A. Synergies: atoms of brain and behavior. Adv. Exp. Med. Biol. 629, 83–91 (2009).

    PubMed  Article  Google Scholar 

  53. 53.

    Hoel, E. P., Albantakis, L., Marshall, W. & Tononi, G. Can the macro beat the micro? Integrated information across spatiotemporal scales. Neurosci. Conscious. 1, niw012 (2016).

    Article  Google Scholar 

  54. 54.

    Marshall, W., Albantakis, L. & Tononi, G. Black-boxing and cause-effect power. PLoS Comput. Biol. 14, e1006114 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Albantakis, L., Massari, F., Beheler-Amass, M. & Tononi, G. A macro agent and its actions. Preprint at https://arxiv.org/abs/2004.00058 (2020).

Download references

Acknowledgements

We thank M. Boly, A. Cattani, F. Ellia, G. Findlay, B. Juel, W. Marshall, W. Mayner, G. Mindt and R. Verhagen, and especially J. Hendren, for their comments on the manuscript. This project was made possible through support from Templeton World Charity Foundation (nos. TWCF0216 and TWCF0526) and by The Tiny Blue Dot Foundation (UW 133AAG3451). The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of Templeton World Charity Foundation and The Tiny Blue Dot Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giulio Tononi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks Viktor Jirsa and Klaas Stephan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Supplementary Figs. A1 and B1–B3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grasso, M., Albantakis, L., Lang, J.P. et al. Causal reductionism and causal structures. Nat Neurosci 24, 1348–1355 (2021). https://doi.org/10.1038/s41593-021-00911-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing